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ABSTRACT

This report summarizes research in the development of

mathematical models of information processing systems con-

ducted at The University of Michigan Systems Engineering Lab-

oratory during the period from October, 1967 to October, .968

under Rome Air Development Center sponsorship. Particular

attention is given to a new approach to automata theory. the

use of multiple index matrices in generalized automata theory,

asymptotic decomposition of machines, recognizability of equa-

tion sets, algebraic isomorphism invariants for transition

graphs, iterative network realization of sequential machines,

optimum sequencing of jobs subject to deadlines, and the theory

of formal languages and its imapact on the design and implemen-

tation of programming langua-ges.
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INTRODUCTION

This report is the final report in a series of yearly rcports over

a four-year period concerning mathematical models of information

processing systems conducted in the Systems Engineering Labc'ratory

under the direction of Professor H. L. Garner, Most of the theories

relevant to computation relate to eitier automata theory or the theory

of formal languages. This is true for most of the research discussed

in this report. The exception is Section 7. In Section 7 the techniques

common to operations research are used to investigate the problem of

optimum sequencing.

In Section 1 Professor D. Muller outlines a new approach to

automata theory based on the algebra of relation,. This particular

approach provides basic and powerful conceptual tools applicable to

the problem of automata decomposition. In the second section Muller

develops a generalization of automata theory which is an alternative

to the generalized autoinata theory developed by Eilenberg and Wright

based on category theory and universal algebra. Muller's gerierali-

zation is based on formal mathematicai notions used in switching and

automata theory and provide a convenient way of visualizing the con-

structions about the systems which enable one to anticipate results.

In last year's report, one section reported research by Putzolu

on the subject of asymptotic decomposition of automata. His analysis

treated the case in which state based type of realization was assumed

and decomposition reporting state splitting was not permitted. In Sec-

tion 3 recent research results of Putzolu and Muller are presented

which consider the case where state splitting is allowed.

Section 4 presents researh by C. R. Shepard concerning gen-

eration and recognition 4- formal languages. The research concerns

a generalization o1 the languages gererated by a left linear grammar

known as equational sets. Equationality and recognizability can be de-

fined for any algebra. The conditions on an algebra such that the defi-

nitions of equatiou'.ality and recognizability coincide are given. If
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equational sets of an algebra are recognizable, then all word problems

on the algebra are solvable. The converse is false. These abstract

results are believed to have some implication on the design of paren-

thesis free languages, and list structures.

In Section 5 the results of research on the algebraic isomor-

phism invariants for transition graphs by J. F. Meyer is presented

in complete but condensed form. The general results of this research

concern 1) How the values of the isomorphism invariants relate to

invariant structural characteristics and 2) The specification of special

classes of transition graphs for which the isomorphism invariants

are complete. The abstract results presented in this section per-

tain to the problems of code design and automata design.

In Section 6, J. R. Jump's research on the iterative network

realization of sequential machines is summarized. A design algo-

rithm is shown to exist for all sequential machines. A specific de-

sign algorithm is specified and bound on the complexity of the iter-

ative realization is given for different classes of sequential machines.

This study is relevant to the application of f si technology.

In Section 7, research by F. L. Lawler and M. Moore concern-

ing the sequence of tasks subjecL to deadline constraints is presented.

The class of sequences c3nsidered are those for which the consisten-

cy principle hold. For this class there exists a linear ordering of

tasks which determines an optimal schedule. This principle is ex-

ploited to produce solution methods more efficiently than previous

methods.

In Section 8. L. Liu presents the structure of formal languages

and relates this structure to some of the problems involved in com-

puter languages. Computer languagcs do not exactly fit the existing

classification structure and directions for future research are indi-

cated.

ft



Section 1 I

A New Approach to Automata Theory

This section presents a new approach to automata theory based

onL an aigebra of relations which is applicable to automata theory in

much the same way Boolean algebra is applicable to switching t0 )ry.

One of the purposes of this approach is didactic. Previous ex-

perience has shown that this method of teaching automata theory is

useful with students who have had little contact with the conventional

methods and that it provides them with a more powerful way of think-

ing about the subject.

1. 1 An Algebra of Relations

1. i. 1 Let Q and Q' be two nonempty sets, and le' Q X Q' repre-

sent the Cartesian product or set consisting of all ordered pairs

(q, q'), where q is an element of Q and q' is an element of Q'. We

nav use the formal mathematical notation:

QX Q' = t(q,q') I qE Q, q'E Q'I.

A subset R of such a Cartesian product Q x Q' is a binary rela-

tion. When defining such a binary relation we must give all three sets

Q, Q' and R. We shall call Q and Q' the input and output sets respec-

tively and R the set of pairs. Thus. we regard two relations as equal

only if they have the same input and output sets as well as the same

set of pairs.

3
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There are three other convenient ways that we may think about

binary relations. First, if we are given a relation R C Q X Q', then

we may imagine a Boolean matrix whose rows are labelled by the ele-

ments q of Q and whose columns are labelled b,, the elements q1 of Q'.

The matrix element in the row q and column q' is made 1 if and only if

(q, q') is in R. Otherwise it is made 0. It is clear that for every bi-

nary relation we may imagine such a matrix and that conversely for

every Boolean matrix we have a corresponding binary relation.

Second, we may think of the relation R C Q x Q' as representing

a process. If we are given some member q of the input set Q then the

process yields an element q' of the output set Q' such that (q, q') is in

R. If no such q' exists, then the process must be assumed to produce

no output. On the other hand, if several such elements q' exist, then

we suppose that 'he process makes an arbitrary and unpredictable

choice of one of them. Since a process must be described more care-

fully and exactly than has been done here if it is to be useful mathe-

matically, we shall simply regard this model as a coiivenient intuitive

way of thinking about relations.

Third, we may think of a relation as being described by a directed

linear graph. This model is partict-larly useful when the relation is

square, that is, when Q =Q'. The nodes of the graph are ihcn just

the elements of Q and for each pair (q, q') in R. we draw a line from q

to q' with an artow pointing toward q'.
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It is also possible to represent relations which are not square

by means of linear graphs. Suppose that R C, Q x Q' is not square,

i. e., Q 4 Q'. Then we may form a corresponding square relition

R , (Q iQ') x (Q ( Q'). In this case we use the union Q Q' as both

the input and output sets. The directed lihear graph corresponding to

this square relation may also be used to describe the original relation

provided the input and output sets are specified.

Binary relations are sets and therefore we may use Boolean alge-

bra when dealing with them. Thus, if R C Q x Q' and S c Q x Q' are

two relations with the same input and ,;utput sets, then we may form

their set theoretical union R u S C Q x Q' and intersection R n S C

Q x Q'. The union and intersection are both taken as relations having

the same input and output sets as R arid S. Furthermore, any relation

R C Q × Q' may be complemented giving IR = Q x Q' - R which consists

of all pairs (q. q') in Q x Q' but not in R. We also note that relations

with given input and output sets are partially orde.'ed by set inclusion,

written R C S.

Relations are quantit;:s with more mathematical structure than

sets. and therefore we may define other important operations on re-

tations. If R C Q >x Q' and S C Q' x Q" are two relations such that

the output set Q' of R is the same as the input set of s, then we may

cdefine the Pierce pr:oduct R - S of P. by S. We take R -, S C Qx Q"

as the relation ccnsisting of all Iairs (q, q") such that for some q' in

0' we have (q. q') ia 1 a td (q', q") in S. We may use the formal
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mathematical notation:

R a S = {(q,q")[ ]q1 Q?, (q,q') E R, and(q?,q"I) E S}.

If R and S are regarded as corresponding to Boolean matrices,

then R o S corresponds to a form of Boolean matrix product in which

the summation which is used in the conventional definition of matrix

product is replaced by the Boolean operation "or". Similarly, if R

and S are thought of as representing processes, then R o S represents

a combined process in which the output of R is used as the input for S.
-1

We further define the inverse or transpose R of the relation

R C Q X Q' as consisting of all rairs (q', q) such that (q, q') is in R.
-1.

Thus, R is a subset of Q' X Q so that the input and output sets are

interchanged when taking the transpose. In the case of the linear

graph model, the transpose is formed by reversing the directions

of the arrows of the graph.

We will now show a precise correspondence between identities

on Boalean matrices and identities on matrices of integers.

Let Z be the set of nonnegative intcgers and define a mapping

i3 from Z to the set {0, l} by the rule that J3 craps 0 to 0 and 3 maps

t to 1 if t '> 0. If M. and N are matrices whose elements are nonneg-

ative integers, then let M' and N' be the corre "ponding Boolean ma-

trices obtained by replacing the elements of M and N respectively

with their images under the mapping d. We may easily derive the fol-

lowing rules which allow us to regard f3 as a kind of homomorphism.

S.I. . .-. . .

9
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1. (M+N)' - M' UN'

2. (M-N)' - 0 N'

3. (MEN)'-- M'fN'N

T I4. (M)' (M)

5. IfM _N, thenM' CN'.

Here, the product M 0 N means elementwise multiplication of the

Ttwo matrices and M represents the transpose. Yet a sixth rule

might be written for multiplication of a matrix by a scalar.

The preservation of the various operations under the homomor-

phism 3 allows us to transform any identity involving matrices of non-

negative integers and these operations into an identity for Boolean ma-

trices.

Not all operations on matrices of nonnegative integers are pre-

served under /3. For example, the matri=' difference M-N does not

map uniformly, and identities involving the difference do not generally

correspond to identities on Boolean matrices. Furthermore, since

the mapping is not one-to-one there may be identities which are valid

for Boolean matrices but which do not hold for matrices of nonnegative

integers.

1. 1. 2 In our study of the properties of relations we shall need

to consider relations with certain special properties, and we there-

fore proceed to define terms for some of these properties. Let

R C Q x Q' be a relation. then:

t



1. H is determinate iff for each q e Q there ii at most one

q' E Q' such that (q, q') is in R.

2. R is productive iff for each q e Q there is at least one

q' e Q' such that (q, q') is in R.

3. R is a single valued iff it is both determinate and produc-

tive. It is then called a mapping or a function from Q to Q'.

4. R is surjective or onto iff for each q' e Q' there is at

least one q E Q such that (q, q') is in R.

5. R is injective iff it is single valued and R is determinate.
-1

6. R is one-to-one iff R and F. are both single valued.

Using the matrix model, we see that if R is determinate, then

each row of the corresponding matrix may have at most one element

which is 1. Similarly, if R is productive then each row contains at

least one 1.

In our model of R as a process we see that if R is determinate

then the result q' if it exists, is uniquely determined by the input q.

Similarly, if R is productive then some output q' must occur for ev-

ery input.

We shall write 0 to denote an empty relation. The set 0 is re-

garded as a subset of Q x Q' but containing no pairs. This special

relation has the proptrties of a zero with respect to Pierce product.

That is, R - 0 = 0 - R = 0 whenever such multiplication is possible

with a relation R. The Boolean matrix correspond-ng to 0 is a matrix

whose elements are all 0.



If Q is a set, then define < Q as the set of all pairs (1, q), where

q is in Q and 1 is the element of a singleton set 1. Thus, < Q may be

regarded as a row vector whose elements are all 1. The transpose

of < Q we shall write as Q > and it consists of all pairs (q, 1) where q

is in Q. We note that Q > is a column vector. A similar notation may

be used for subsets of Q. Thus, if K C Q then < K and K > represent

row and column vectors respectively whose elements are 1 precisely I
for members of K.

Row and column vectors may be used with the Pierce product

notation. In particular, if R C Q x Q' is any relation, then < Q o R

is called the range ofR and Ro Q'> is called the domain of R. We

note also that Q > o < Q' = Q x Q', providing a convenient abbreviation.

1. 1. 3 We now direct our attention to the case of square relations.

A particular square relation C_ Q x Q of some importance is called

the identity on Q. It consists of just those pairs (q, q') for which q = q'.

Thus, IQ = [(q, q) I q e Q]. The Boolean matrix corresponding to IQ

consists of l's along the diagonal and O's everywhere else.

Let R C Q x Q be a square relation, then:

7. R is symmetric iff whenever (q, q') is in R, then (q', q)

is also in R.

8. R is antisymmetric iff whenever (q, q') is in R and q ý q',

then (q', q) is not in R.

9. R is reflexive iff for each q E Q, the pair (q, q) is in R.
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10. R is irreflexive iff for each q e Q, the pair (q, q) is not

in R.

11. R is weakly reflexive iff whenever (q, q') is in R, then

(q', q') is in R.

12. R is dually weakly reflexive iff whenever (q, q') is in R,

then (q, q) is in R.

13. R is transitive iff whenever (q, q') and (q', q") are both

in R, then (q, q") is in R.

14. R is an equivalence relation iff it is reflexive, symmetric,

and transitive.

15. R is a partial order iff it is reflexive, antisymmetric,

and transitive.

16. R is a total order iff it is a partial order and every pair
-1

(q, q') in Q X Q is either in R or in R 1

Using our matrix model, we see that if R is weakly reflexive

then any column in the corresponding matrix which is not all 0 has

a diagonal element which is 1. In the graph corresponding to a weakly

reflexive relation, any node having an arrow pointing toward it must

also have a self loop.

The terms "antisymmetric" and "irreflexive" are subject to

misinterpretation. There are relations, such as IQ, which are both

symmetric and antisymmetric, so that antisymmetry is not the denial

of symmetry. Also, some relations are neither symmetric nor anti-

symmetric and some relations are neither reflexive nor irreflexive.
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Many of the special properties we have defined have formal in-

terpretations. Examples of such interpretations are contained in the

following list in which it is assumed that R has the property in ques-

tion.

1. Determinate: R o R a IQ,

2. Productive: R o R I , or alternatively

RoQ'>=Q> .

3. Symmetric: R = R

4. Antisymmetric: R n R C I

5. Reftexive: R D I

6. Irreflexive: R .) IQ, or alternEively R .q =!

7. Weakly reflexive: R o (R n IQ R.

8. Dually weakly reflexive: (R n IQ o R = R.

9. Transitive: R o R C R.

1.1A4 If R . Q x Q is any square relation, then although it may

not be reflexive, we may obtain a reflexive relation from it by the sim-

ple device I forming R '-jQ. This new relation R u IQ will be called

the reflexive extension of R and may be constructea using our matrix

model by simply replacing each diagonal element of R by 1.

Similarly, R may not be symmetric, but we may use R to form

the relation R (1 R- which is symmetric. It is also true that R - H-I

is symmetric, but we shall define the symmetric extension of R to be

-l 1IR u R rather than R ,1 RH

("
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Finally, we define R U R U IQ as the symmetric and reflexive

extension of R. We note that it is both the symmetric extension of the

reflexive extension and the reflexive extension of the symmetric ex-
-1

tension. Clearly, R u R U I is both symmetric and reflexive.Q
Somewhat less obvious is how one might construct a transitive

extension of a square relation R. This extension, however, will be

very important in our later analysis and for this reason we designate

it by the special symbol R+. We define R+ as the relation consisting

of all pairs (q, q') such that for some finite sequence q,, q2 ' ""qn

of elements of Q we have q = q, and qn = q' while each consecutive

pair (qi, qi+l) of terms in the sequence is a member of R. We do not

require that the terms of the sequence all be distinct, but we do as-

sume that the number n of terms is at least 2.

A forracnl representation of the above definition is:

P.+ = RJ Ro Ru Ro Ro R ....

In the dfiinition ci ,'he transitive extension if we had allowed n to

be 1 as well as larger inrcgeis, then we obtain a relation which will

be designated by R*. It is called the reflexive and transitive exten-

sion of R. One may show quite easily that R* = R+ t) IQ and that

R =R a R*. Thus, R and R* are transitive but R+ may not be re-

flexive while R* is always reflexive.

We define R C Q x Q to be acyclic iff R+ is irreflexive. Using

the model of a directed linear graph we have a convenient interpreta-

tion for this property. We note from our definition of R+ that it consists
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of all pairs (q, q') which are joined by a chain of sequence q,, q2'

qn which starts at q = q, and ends at qn = q'. Thus, if R is irreflex-

ive we can never have q = q'. In other words, there can be no loops

or cycles in the graph which permit one to pass from some point back

to itself following the direction of the arrows.

A familiar example of an acyclic relation is provided by the con-

cept of a combinational circuit. In such a circuit we let Q represent

the set of nodes of the circui, and place (q, q') in R whenever there is

a switching element having q for an input and q' for an output. Thuq,

if the circuit is combinational there is no feedback and hence no cycles

of the type described. This is equivalent to saying that R is acyclic.

1. 1. 5 If R C Q x Q is any square relation, then we define the

trace of R which is written Tr(R) to be 1 if (q, q) is in R for some

q e Q and to be 0 otherwise. In terms of our matrix model we form

Tr(R) by taking the union of the diagonal elements of the matrix corres-

ponding to R. Also, in the linear graph model we no.e that Tr(R) = I

if the graph corresponding to R has any self loops and Tr(R) = 0 other-

wise.

If we regard 1 as standing for truth and 0 as standing for false-

hood, then Tr(R) represents the proposition (I q E Q, (q, q) e R).

In the case of matrices whose elements are integers, it is cus-

toinary to define the trace of a matrix as the sum of its diagonal ele-

ments. Since our mapping 3: Z - )0. 1} is a homomorphism if sum-

mation becomes union, we see that the trLce operation is preserved
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under this mapping. That is to say, the image of Tr(M) under is

just Tr(M') if M' is the image of M.

1. 1. 6 It is easily shown that if R is any relation, then R o R

is square, symmetric, and weakly reflexive. We therefore may won-

der if whenever we have a relation S C Q > Q which is square, sym-

metric, and weakly reflexive, whether it can be written in the form
-1

R o R = S for some relation R. This question will be answered in

the affirmative, but some proof is required.

Let S C Q × Q be given as above and define a family •: of subsets

K of Q by placing K in 41 iff it satisfies the following property for

every q f Q. The element q is in K iff (q, q') is in S for each q'YE K.

A formal definition of ;. may be written as follows:

= {KC Q I VqE Q, [qE K <K>VV' K, (q,q')E S]}.

Although this definition of the amily X is complicated we gain some

insight into its nature and structure by developing some of its prop-

erties.

Define a subset J of Q to be complete iff every pair (q, q') of

not necessarily distinct elements of J is also a pair in S. A maxi.nal

complete set is one which is not properly conitained in any other com-

plete set.

Lemma 1

9t is the family of all maximal complete sets.

Proof: If K is in 'k and q is in K. then (q. q') ( S for each q' E K.

Hence every pair (q. q') of not necessarily distinct elements of K
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must be a pair in S, so K is complete. In fact, we see that this prop-

erty expresses the "only if" part of our defining condition for X.

Next, consider a complete set J which is not maximal. There must

be some other complete set J' such that J C J'. Therefore, there is

at least one element q e J' such that q is not in J. Since J' is com-

plete, we see that (q, q') is in S whenever q' is in J. Thus, J cannot

be in ' and every set K e 9k must be a maximal complete set. We

see that this latter property expresses the "if" part of our defining

condition for .?. Hence, the defining condition is satisfied by every

maximal complete set, thus proving the lemma.

Lemma 2

Whenever (q, q') is a pair in S, there is some K E

such that both q and q' are in K.

Proof: If q = q', then the singleton set {q} is complete. Otherwise,

if q ý q', then the two element set {q, q'} is complete because (q', q),

(q, q) and (q', q') must all be in S as a result of the fact that S is sym-

metric and weakly reflexive. Thus, q and q' are both in some com-

plete set C . Let ( be the family of all comrlet" sets C which in-

clude C1. Then 0 is partially ordered under set inclusion and ful-

fills the condition of Zorn's lemma, namely that every chain in "

have an upper bound. Hence, we conclude fror.m Zorn's lemma thatC

has a maximal clement K. This element is also maximal in the family

of all complete sets since any set including K must also include C 1

Hence K is in • by lemma 1. and we have completed our pioof.
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Remark 1

There may be other families of maximal complete sets

which have the property expressed in lemma 2.

Proof: We give a simple example of such a case. Let Q be a six

element set {1, 2, 3, 4, 5, 61 and let S contain the pairs (1, 2), (2, 3),

(3, 1), (2, 4), (3, 4), (1, 5), (3, 5), (1,6), (2,6) as well as all other pairs

required to satisfy symmetry and reflexivity. Then, the graph has

the following form:

5\3 2 6

/4

The family of three maximal complete sets {1, 2, 6}, {2, 3, 4}, { 1,3, 5}

satisfies the condition of lemma 2 but it does not contain the maximal

complete set ý 1, 2, 3i. Thus, the remark is proved.

Continuing with our original development, we introduce a set

W, called the normal set which is in one-to-one correspondence with

the family )". We write w- K to indicate that the element w VE

0!
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corresponds to the set K e 6&. This set W is to be used as a nota-

tional convenience in describing properties of the relation S. When

it ia necessary to specify S we shall use subscript notation as W and

S

Define the relation Sd _ Q x W by the rule that (q, w) is in Sd

iff q e K, where w - K. W%: shall write Sd as an abbreviation for

(Sd)- 1.

Theorem 1

If S C Q x Q is symmetric and weakly reflexive,

then 6S oS-d

Proof: If (q, q') is in S then by lemma 2 there is a set K of ý/ con-

taining both q and q'. Pick w E W which corresponds to this set.

Since (q, w) is in Sd and (w, q') is in S-d, we see that (q, q') is in

d -d d -dSdo S . Hence, S CSdo S

d. -dNex.t, suppose that (q, q') is in S o . Then, there must be

d -dsome element w E W such that (q, w) is in S and (w, q') is in S

Pick K E 1 corresponding to this w. Since both q and q' are in K

we have (q, q') f S by lemma 1, and the theorem is proved.

Remark 2

If S is transitive then Sd is determinate and the family

"i Is pairwise disjoint.

Proof: Let K and K' be two not necessarily distinct elements of •<

andassumeK ý K' 1i. Ifq, is inK 1 K' then(q, ql) is inS forall

q E K since K is complete and similarly (q,. q') is in S for all q' f K'.

R"
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Since S is transitive, we see that (q, q') must always be in S whenever

q is in K and q' is in K'. But, S is symmetric and weakly reflexive,

and therefore K U K' is complete. However, K and K' are maximal

complete sets so therefore K = K'. Therefore, if K 4 K', we have

K n K' = and * is pairwise disjoint.

To show that Sd is determinate we consider any element q E Q.

If (q, w) is in Sd, then q is in the set K E *i which corresponds to

w e W. But, q -an be in no other set K' of *'• so there is no other

d delement w' of W such that (q, w') is in S . Hence S is determinate

and the remark is proved.

Remark 3

If S is reflexive then Sd is productive and IK is a cover
of Q in the sense that _) K = Q.

K FK

Proof: Let q be any element of Q. Then (q, q) is in S since S is re-

flexive so the singleton set 'q} is complete. By lemma 2, there is

some K E X2 such that q E K, aiA hence , is a cover. Also if

w - K, then (q, w) is in Sd so Sd is productive.

Remark 4

If S is an equivalence relation then Sd is single

valued and 2. is a partition of Q.

Proof: The conditions of both remarks 2 and 3 are satisfied if S is

an equivalence relation since it is then both i-flexive and transitive.

Hence • Is a partition, i. e., a pairwise disjoint cover. Also Sd

is determinate and productive, thus single valued.

! :0
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We note that the sets of are called equivalence sets when

S is an equivalence relation.

1. 1. 7 Define the relation R r Q x Q1 to be finitary iff there is

a finite set Q" which admits two relations G C, Q x Q" and H c Q" vx Q'

such that R = G o H. We note that any finite relation R must be fini-

tary since R = Ro I,
Q,

Theorem 2

If S C Q x Q is symmetric and weakly reflexive,

then S is finitary iff the corresponding family

is finite.
Proof: If is finite then W is finite andS=Sdo SS where

Sd C Q X W and S-d (__ W x Q so S if finitary.

Next, suppose that S is finitary and hence may be written in the

form S = G o H where _G C QxQ" and H C Q"x Q for finite Q". De-

fine an equivalence relation E C Q x Q by the rule that (q1, q2 ) is in

E iff for all q" E Q" we have (q,, q") E G <--=-> (q2, q'") E G. It is triv-

ial to show that F is an equivalence relation. Also, the number of

equivalence sets is finite since if Q" is of cardinality n the number of

equivalence sets can be no more than 2 n. We further see that if

(qI, q2 ) is in E, then for all q E Q we have (q1 , q) t S K"-•> (q 2, q) e S.

Thus. q1 and q2 will always be in exactly the same sets K of

since the rule for inclusion or exclusion applies equally to both and S is

I. weakly reflexive so that inclusion of one will not cause exclusion of the

other. This means that each K of -k is a union of £ equivalence sets.
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Thus, 2, is finite since the cardinality of ,. can be no greater than

the number of possible unions of E equivalence sets which may be

formed.

Define the weight of a finitary relation R c Q x Q' to be the

minimum cardhiality of any set Q" such that R = G o H for some

2
G C Q x Q" and H C Q" x Q'. Further, let R be an aobreviation

for R o R, and in general, Rn for the n-fold Pierce product of R.

Theorem 3

If R C Q x Q is finitary and of weight n, then

+ uR 2  nit Ru R2 u... u Rn

Proof: From Lie definition of R, we know that R DR u R2 U ...

u R n. Hence, to show equality it is only necessary to prove that

any pair (q, q') e R' is also in R U R u ... u Rn. If (q, q ) is in R,

then (q, q') is in Rn for some integer m, and we may take m > n for

otherwise the conclusion is obvious. Write R = G o H as above, where

G C Q x Q" and H C QI x Q, and Q" has cardinality n. Then, R
G 0 Ho o G o H =G 0 (H o G) M-1oH heeHoGC 1 1G H... = °~(oG H, where H oG cQ"× Q"

0

and we adopt the convention that (H ° G) = I Since (q, q') is in

Rm, there must be a pair (p, p') c (H o G)m such that (q, p) is in G

and (p', q') is in H. However, if (p, p') is in (H a G) re', there is a

sequence P = Pi 2' "' pm = p' such that each consecutive pair

(pi, Pi+l) is in H 0 G. But, Q" contains only n elements and m > n

so the terms in the sequence cannot all be distinct. We can therefore

contract the sequence, for if pi = p., then p 2PI p " 'P' P 9

i py 21 0
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"' Pm = p' satisfies the required condition on consecutive pairs.

Hence there is some integer m' n such that (p, p') is in (Ho G)m -1

and therefore (q, q') is in G ° (H o G) o.H = R . This completes

the proof of the theorem.

Theorem 4

If R C Q x Q" is finitary, then RQ x Q' - R is

finitary.

Proof: Let us write R G H, where G C QX Q" andH C Q"× Q',

with Q" finite. Let '(Q") be the family of all subsets of Q". Con-

struct a relation G' C Q x tJ' (Q") by placing (q, P) in G' iff P con-

sists of just those elements q" _ Q' such that (q, q") is in G. Evi-

dently, G' is single valued. Also; construct a relation HI' C. i(Q,)

X Q' by placing (P, q') in H' iff (q", q') is not in H whenever q" is in

P. Consider the product G' ° H'. If (q, q') is in G' 0 H', then for the

unique P associated with q, we have (P, q') not in H so (q, q') is not in

G H = R. On the other hand, if (q, q') is not inG' o H', then for the

unique P associated with q, we have (P, q') not in H'. Thus, there is

some q" E P such that (q", q" is in H. Hence, (q, q') is in G 0 H = R.

Therefore, G' - H' = R and since Q" is finite, ,'/(Q") is also finite,

showing that A is finitary.
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1. 2 Relational Systems

1. 2. 1 To describe a relltional system S, one must specify:

(1) An alphabet A which is a finite set of letters a which are sym-

bols used for indexing and labelling expressions.

(2) A carrier set Q consisting of states or elements q oi the system.

(3) A mapping F from A to the family of square relations on Q.

The image of a E A under F will be written Fa and called the

set of transitions under a. Thus, F C. Q X Q.

We may think of a relational system S as being equal to the triple

(A, Q, F). It may be represented by a labelled graph wnose nodes cor-

respond to the states q of Q. Between every pair (q, q') of states in

Fa we draw an arrow pointing toward q' which we label with the letter

a. Such a graph is sometimes called the state diagram of a nondeter-

ministic automaton.

Two relational systems S = (A, Q, F) and S' = (A, Q', F') which

use the same alphabet A are called similar systems. We shall be

principally concerned with the interaction of similar systems and

this is our reason for setting up such an elaborate structure. If one

were concerned just with the properties of a single system S = (A, Q, F)

he could use the letters a in A to stand for the corresponding relations

F a. Thus, the mapping F would not need to be explicitly mentioned

because it would be placed on a higher level of abstraction thaa is

now being contemplated. However, this cannot be our present appi oach.
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Important special caseF are now listed.

1. We call S determinate iff every relation Fa is determinate.

a2. We call S productive iff every relation F a is productive.

3. We call S single valued iff every relation Fa is single vrlued.

The case in which S is single valued hMs been extensively investigated

in the literature. The following names have been given to this type

of rC ýtional system: Monadic aigebra (J. B. Wright), Unary algebra

(J. R. Buchi), Semi automaton (A. Ginsburg). An important fact which

was recognized by Wright and Buchi was that a single valued relational

system is an algebra in the sense of Garrett Birkhoff. Therefore, a

host of theorems which apply generally to algebras also hold for these

relational systems.

1.2.2 Again, let u& consider a general relational system S =
.i:[ (AQ, F). We write 4' to represent the family of all relations Fa,

where a is in A. Also, let 'V' stand for the closure of ') under

Pierce product. The input semigrolip of S is the system whose car-

rier is and whose operation is Pierce product. We see that this

system is indeed a semigroup since Pierce product is associative and

• is closed tnder it.

It was apparent from section 1. 1. 3 that I has the properties of
a unit. Thus for all relations Ftt Ev +we have IQ o Ft = Ft o IQ=~ Ft t I Ft.

If we attach I to - we get a set u I uII which is the
Q Q

carrier of the input monoid of S. A monoid is defined as a semigroup

with a unit and we see that ' forms a monoid under Pierce product.
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4

Theorem 5

To every monoid M with a finite set of generators G,

there corresponds a single valued relational system

SM = (G, M, F) whose input monoid is isomorphic to M.

Proof: From the statement of the theorem, we see that G is to be taken

as the alphabet of S and M as its carrier. For each element t e M,

we define Ft as the set of all pairs (s, s') such that st = s'. The restric-

tion of t to G provides us with the definition for F of S Clearly,

S is single valued. We now show that the correspondence t - Ft

is one-to-one. Let e stand for the unit of M, then (e, t) is in Ft but

not inFt, ift t'. Thus, if Ft= Ft, we havet=t'. Also, Fs o Ft

F since M is associative. This shows that M is isomorphic to the
st

family {Ft} under the operation of Pierce product. Finally, we prove

that 0 * is the same as the ikmily {Ft}. However, F is in f for

each g _ G and G is a set of generators for M. Thus, each element

t e M is either the unit e or representable in one or more ways as

finite product g1 g2 ... gn of generators. In the former case, we have

Fe = IME m * and in the latter case F lg2'gn = Fg1 Fg2

o Fgn e i. Hence, is just the family {Ft}, where t c M, and

the theorem is proved.

1.2.3 A finite sequence a(1) a(2) ... a(n) of not necessarily dis-

tinct letters taken from an alphabet A is also sometimes called a string

or word or tape on the alphabet A. Let A4+ represent the set of all

such strings on A. Two strings in A+ will be considered to be equal

I... .
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if the letters occurring in corresponding positions of the strings are

alway the same. We define the •lh of a string a(l) a(2) ... a(n)

to be the number n of letter which make it up.

The concatenation of two strings s = a(1) ... a(m) and

t = h(1) ... b(n) is the new string st = a(l) ... a(m) b(I) ... b(n)

formed by juxtaposing the two. COharly, concatenation is an associ-

ative operation. Also, A is closed under concatenation and we call

this system the free semigroup genera,. d by A.

One may attach a unit element e to A +, giving a set A* = A + u {e}.

We define e to be an element which follows the operation rules et = te

t for all t in A*. Although it is difficult to imagine e to be a string

or sequence, we shall call it the string of length zero. It has also

been variously called the null sequence, the empty word, and possibly

other names. The set A* under coricatenation and the unit rules for

e, we call the free monoid generated by A.

Using theorem 5, we may construct A* = (A, A*, F) which is

called the singly generated, free monadic algebra on A. The carrier

A* of this relational system is the same as the carrier of the free

monoid from which it is derived. Each relation F a consists of all

pairs (t, ta), such that t is a string in A*.

Other definitions concerning A* will be needed in our later work.

We call a string r E A* a prefix of a string s i A* 1ff s can be written

in the form s = rt for some string t e A*. We note that if the string

t exists it is unique. Hence we define r/s to be t if s= rt and take it
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to be undefined if no such t exists. Similarly, we say t is a suffix

of s iff s = rt for some r. We also introduce the notation s/t = r

as in the previous definition.

A proper prefix of a string s is a prefix of s which is shorter

than s. Similarly define a proper suffix. A segment of s is a prefix

of a suffix of s. It is a proper segment if it is shorter than s. We

note that a segment of s is also a suffix of a prefix of s. In fact, s'

is a segment of s when we have s = rs't for some r and t. We might

then use the notation s' = r\s/t.

The approach which we are taking to the algebra of strings in

this secti.on may be described as an informal one. We simply set

down some of the properties of strings and rely on the experience

of the reader to justify their reasonableness.

Others have taken more formal approaches which require more

intellectual effort and are not necessary for our purposes. One such

approach is to base the algebra of strings on a simple set of postulates

which are similar to the Peano postuiates for numbers. We can then

derive such rules as the associative law for concatenation.

Another approach is to treat each string as a sequence in the

sense of being a mapping from a set of consecutive integers to A.

Then the mechanism of concatenation is described in terms of such

mappings and the results are proved.

1.2.4 Let S = (A. Q, F) and S' = (A, Q', F') be two similar rela-

tional systems which may or may not be distinct. Then a relation
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a C Q x Q' is called a generalized congruence between S and S' iff

for all a e A,
-1

i) F o a o Fa 'C a,

a aai ao F a 'oQ'>C _FaoQ>, and

iii) aC o Fa oQ > C FaaQQ

This formal definition can also be expressed verbally. Property (i)

is called the subst.uution property and corresponds to the statement

that if (q1, q2 ') is a pair in a and if (qr, q2) is in Fa and (ql", I2') is

in Fa' then (q2' q2 ') is also in a. Properties (ii) and (iii) are dual

in the sense that one may be obtained from the other by interchanging

S and S" while taking the inverse of a. Thus, if a is symmetric, the

last two properties are identical. We may express (ii) by saying

that whenever (ql, q 1') is in a and there is a pair (q'1, q' 2) E Fa',

then there is also a pair (q1, q2) E Fa. This property is automatically

fulfilled if S is productive. Similarly (iii) holds automatically if S'

is productive. Thus, if only productive systems are being considered

we need merely state (i).

A number of special cases of a generalized congruence a are now

listed.

1. a is a congruence if it is an equivalence relation.

2. a is a homomorphism if it is single valued. Special

types of homomnrphism are now liqted.

3. a is a monomorphism if a is determinate.

4. a is an eipmorphism if c is productive.

I#
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5. c is an endomorphism if it is square.

6. a is an isomorphism if a-1 is single valued.

7. a is an automorphism if it is a square isomorphism.

Theorem 6

If ao C Q x Q' is a generalized congruence between S and

S' and a2 C Q' x Q<W is a generalized congruence between

S' and S", then 1 0 a2 is a generalized congruence be-

tween S and S".

Proof: To prove Fa 1o a° 02 Fa" • .F2' we assume (q2 , q2 1')

is an element of Fao al 0 a 2  Fa". Then find ql, ql', and ql" such

that: (q, q2) E Fa, (ql, ql') e a,, (ql, ql'") E a02 and (ql", q2")E Fa

Then, by 2 FaiQI>C Fa' o Q' > we see that since (ql', 1) is in

2 aFa"obQ>, it is inFaIoQ' > Hence there is a q2' t Q' such

that (q,', q2 ') is in Fa'. Now, Fa o 0 C aa,, so (q2 , q2') is in

al. Similarly, (q2 t q22") is in O2, thus proving that (q2, q22") is in

a o a 2.

To prove o 2 °Fa" °Q''>CFa o Q > , we proceed alge-Tprva, o Q" a• ' Q I ': anotin-

braically. Use a, F' a Q"> F I Q1 > and obtain 01 02

a 1 'a a0F Q'Q'>. Sinel '° a - F F ° Q Q>I

the result follows. The third property for 01 - u2 is proved in a

similar way.

1. 2. 5 Let S = (A. Q, F) be a relational system. We may extend

our notation by defining F. for each s e A* as follows. When s = e,

then let Fe = IQ. When s is a string a(l) a(2) ... a(n) of length n > 0,
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then let Fs = Fa(1) o F.a Usings •a(1)a(2). .. a(n) = ()o (2) ° Fa ° (n) *f

this rule, we see that whenever s and t are two strings in A*, then

Fst=F o Ft. Consequently, V7 * consists oi just those relations

which can be represented in the form Fs, where s in in A*. We

have thus extended F so as to map A* onto

Theorem 7

If a is a generalized congruence between S = (A,Q, F)

andS'= (A,Q',F'), thenfor each s E A*,

i) Fs oa F' c ,

ii) ao F 'oQ'>CFs o-Q>, and

iii) a oF o Q>C Fs o Q'>.

Proof: The proof is by induction on the length of the string s.

Consider first the case in which s = e, so Fe = and Fe' .

Then (i), (ii), and (iii) are:

i) IQ 0 a 0IQ, Ca,

ii) ao IQ , Q'>C ýo Q>, and

iii) or Q0 Q > C Io Q, >

These are all trivial.

Next, suppose that (i), (ii), and (iii) hold :or some string s - A*

and let a be any letter Wi A. We then seek to prove these same thrce

properties for the string sa. Now, Fsa = Fs o Fa and Fsa' = Fs o

Fa't so

i) Fs- Fsa FaI F8 1 F', FatCF o Fa a. a
C c.



30

To prove

ii) we note that F ao Q' >_ Q' > , sao F ' ° QI >
a4 s

CaaF'oQ'>C, F OQ>.
C-° sS

Thus, if(q, 1) is in a o Fs o F a Q' >, there must be a pair (q, qj)

e Fs. Also thee'e are pairs (q, q') E a and (q', q l
') E Fs'. Hence

(q', q,') is in a by hypothesis (i) where qj' is in Fa' oQ > . Thus

(q 1 ,1) is inao F' aQ,>, and hence inFa oQ>. This shows that

(q, 1) is hi Fs F a o Q > . We prove (iii) similarly. This completes

the inductive step and hence the proof.

Theorem S

If a C Q X Q is a generalized congruence on S = (A, Q, F)

which is symmetric and weakly reflexive, then ad C Q X W

is a generalized congruenca between S and a system S

(A, W, F W) such that for each a E A, the relation Fw is
W -1 o a--dd

definedbv Fa -=-(a o F a d) a-do F o0 a.
a a a

Proof: We must prove that ad has the three properties

i) F oa d W doa Fa .C ,
¢d FWF

ii) od W W > C oQ>, and
Fa- a

iii) a-do Fa Q > F . W >.
a a

The definition of F a may be expressed less formally by saying that

(wl, w2 ) is in FW iff whenever (w 1, q) is in a o Fa. then (q, w2) 's
d

in a and furthermore such an element q exists.

To prove (i), let us assume that (q, w2 ) is in Fa . a o F .

-dAr-, element w 1 must exist such that (w I, q) is in a o Fa and (w I, w2)

L ,a
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is in F Hence, we see that (q, w2) is in a and (i) is proved.a"

d W
To prove (ii), let us assume (ql, 1) is in o FWa W >. There

d
are elements w1 and w2 such that (ql, w2) is in a and (w1, w2) is in

W dFa Hence, there is some element q such that (w1, q) is in a- o Fa.

Therefore, there is an element ql' such that (ql', w,) is in ad and

(q1' q) isinFa. Hence, (qlq,') is ina o a = aandsinceaisa

generalized congruence, it satisfies a o F a Q > C Fa o Q .> . Now,

(ql' 1) is in a o Fa o Q > so it io in Fa o Q > , thus proving (ii).

-ddTo prove (iii), let us assumye (w,, 1) is in a- d F a o Q

Thus, there is at least on- element q such that (w1, q) is in a-d o Fa.

Let us define P as the set oi ':l such elements q. For any two elements

q, q' in P there are associated elements q, and q1 ' such that (q,, wl)

dand t wl) are in a and (ql, q) and (q"', q') are in Fa. Thus,

d -d -1
(q 1 q') is in o =aand(q,q') is inF oao . But, aisaa a*

-1'aeralized congruence and therefore satisfies F o a o F C a.
a a -

Therefore, (q, q') is in a and since q and q' wxere arbitrarily chosen

from P we see that P is a complete set with respect to a. Using

Zorn's lemma as in lemma 2 of section 1. 1. 6, we see that P is in-

eluded in some maximal complete set K E . Thus, there is an

delement w2  K such that (q, w2) is in a for each q e P. But, P is

just the set of all q such that (w q) is in a o Fa so we therefore

W W
have the result that (wl, ) is in Fa Hence, fw1, 1) is in Fa W >

and (iii) is proved. This completes the proof of the theorem.

L
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Corollary 1

If a is a congruence relation on S, then a is an

epimorphism from S to SW.

Proof: When a is a congruence relation it is an equivalence relation

on Q. Hence, by remark 4 of section 1. 1. 6, we see that a is single

valued. Since a is not empty, the empty set is not in 9t and hence

ad is surjective. By theorem 8, it is therefore an epimorphism.

Corollary 2

-- dIf a is a homomorphism from S to S', then (or . a ) a

is a monomorphism from SW to S'.

Proof: If a is a homomorphism, then a o a is a congruence

relation so (a a- 1 )d is an epimorphism. Write e = (a o o--d 0 a.
-1 -1

We wish to show thato0 0 =---WandO o 1 ..C IQ,. Now,
0 o- 1=- ( -1C- -d a -1o(rao- 1)d = o - 1-d099 =(aoa ) c•oa o~aoa-) =(a°a )°

- 1)-d -d -1)-d -I)d

-1 1 -d d -1 -1Also 0o=a 0 -o=aoa ) ao 0(a - ) a- .=a or o a

a I

Corollary 3

If a is an epimorphismn from S to S', then

(a , a- ) , a is an isomorphism from SW to S'.

The proof of this result is trivial. Corollaries 1, 2, and 3 are

analogous to results of a similar nature concerning congruences on

algebras. If A is an algebra and a is a congruence, then it is cus-

tomary to speak of the quotient algebra A / whose elements correspond
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to congruence classes. In our notation, if S is a relati.onal system

and a is a generalized congruence on S then S is the quotient sys-

tern. The analogy is exact when S is a monadic algebra and a is a

congruence on S.

1.2.6 Let S and S' be two semigroups. Then a relation a C

S X S' will be called a generalized semigroup conmgruence iff whenever

(s, Sf') is in s and (s2T s2') is in a then (s1, s2) sl , s2') is in a. The

analogy between this substitution property and that of the previous

section should be clear. Properties (ii) and (iii) in the previous

definition are not applicable in this case since the semigroup opera-

tion is single valued.

Remark 5

The property of being a generalized semigroup congru-

ence is preserved under Pierce product and under in-

finite set theoretical intersection whenever these opera-

tions are applicable.

Proof; Suppose a1 and a2 are generalized semigroup congruences

and a, o a2 can be formed. To show that it is also a generalized

semigroup congruence, let (s V s ") and (s 2Y S2) be in a, o a2. Then,

we can find elements s,' and s2' such that (s Fl' I) and (s2, s2') are

in a 1 while (sl', s ") and (s2, s2") are in a 2. Hence, (sis2 , TsI'2)

is ino andrsl',S2',ss") is in Thus, is •n

al - a2 and the first half of the remark is proved.

Li___
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Next, suppose that Z2 is a set of generalized semigroup congru-

ences a, all between S and S'. Let (s 1 , sI') and (s 2 , s2') both be in

n a. Then, they are in each a e Z2. Consequently, (s 1 s 2, sts 2 1)

is in each a E Z so it is in a. This completes the proof of the

remark.

Remark 6

If a is a reflexive generalized semigroup congruence

on a single semigroup S, then a+ = a is also.

Proof: This remark could be proved easily if we had closure under

set theoretical union as in the case of relational systems. However,

such closure does not hold in the semigroup case. We therefore as-

sume (s 1, sI') and (sV2 s2') are both in a+. Hence, for some m and n,

m n
we have (s 1 , s I FE a and (s 2 , s 2 ')E a. Therefore (as2's S's2')

moan m+n +
is ina o a =a Ca , and the remark is proved.

Using the same defining rules as we used for generalized con-

gruences on relational systems, we can define such concepts as semi-

gm up congruences and semigroup homomorphisms, the iatter being

further classified as epimorphisms, enciomorphisms, etc.

Remark 7

The mapping F of a relational system S = (A, Q, F). when

extended to form a mapping from A* to %'/ * is a semi-

group homomorphism from the free monoid generated

by A to the input monoid of S.
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Proof: The substitution property is just our previously noted rule:

Fst Fs Ft for all s, t in A*. Hence, this result is obvious.

1. 2.7 Let Q be any set and 2 an operator mapping /P(Q) either

to itself or another family of sets. Then, we shall call E2 a dis-

tributive operator iff for every family J of subsets T of Q the equa-

tion

iiTdT I
Q T U = T S2(T)

holds. A special case of the above equation occurs when J is empty,

giving 62(¢) = 4. The property of finite distributivity requires only

that the defining equation hold for finite nonempty families U
Remark 8

A necessary and sufficient condition for f to be

distributive is that ýJT) = t*I(q) for every
qET

subset T of Q.

Proof: This condition is clearly necessary since T is the union of

singleton sets of its elements. It is also sufficient since

Q( U)T) SI f {q') ) f2 {q}) n J (T).

T E qc TE TJ q E T T J

Lemma 3

If Q is a distributive operator mapping <(Q) to itself

and if Q *(T) denotes the closure of Q applied to the sub-

set T of Q. then 12*(T) is the minimum of all subsets T'

of Q such that T' :-D T and T' D SI(T').

Ar
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Proof: Abbreviate .(..(... (T)...)) as , n(T), where n is the num-

cc nber of times a is applied. Then, we may write 0 *(T) = S2 (T),

0 n= 0
where n (T) = T. Thus, we see that n *(T) 2 T and Sl*(T) _

0 (W*(T)), so Q*(T) satisfies the two given conditions. To show that

it is a minimum, we take T' to be any set such that T' z, T and

T' : n(T'). Let q be an element of n*(T). Then q is in S n(T) for

some n > 0. Hence, for some sequence q0 ' ql' ""., qn = q, we have

q0 E T and qi e n (qi-1) for i=1, ... , n by remark 8. Thus, by induc-

tion, we see that q0 is in T' and each q, is in T' since qi-1 is in T'.

Hence, each term in the sequence is in T', and q is therefore in T'.

This completes the proof since we have shown that 62*(T) is a subset

of any T'.

Remark 9

Given a pair S, S' of similar relational systems, not neces-

sarily distinct, and a relation a 0 C Q x Q', then there is a

unique minimum relation a C Q x Q' satisfying (i) a D aO,

and (ii)a 'J Fao o F'.
aEA

If we define n(X) = Fa,,F*.X o Fa, thena= S*(ou0). Also, if
aE A

there is any generalized congruence a' between S aad S' such that

o' : a0 , then a is the minimum such generalized congruence.

Proof: The first part of this remark follows from lemma 3 and

the observation that the operator fQ of the remark is distributive.

The second part of the remark can be proved by first noting that
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u c a' since a is minimal over relations satisfying (i) and (ii). There-

fore, ao Fa'oQ'>C o F oQ>C -a Q>. Similarly, we
-1-

show thatcr o Fa oQ>c Fa Q'1. Thus, a is a generalized

congruence and the proof is complete.

We may think of remark 9 as providing us with an algorithm

for constructing a = f2* (a0 ) when a0 is given. To carry out this algo-

rithm, we define ai+1 = ai)U a) = Fa1 o ai o Fa , for

i=0, 1, 2,..... Then each element of a is contained in some a, While

this algorithm appears to be infinite, there are many important cases

in which it may be terminated after some finite number n of steps.

hi particular, if a 1 = a then clearly a = a. It is also clear thatnn

when each F and each Fa is finitary, the algorithm terminates. A

fairly obvious special case of this situation occurs when the relational

systems S and S' are finite, i. e. Q and Q' are finite.

Theorem 9

Let S = (A, Q, F) and S' = (A,Q', F') be similar relational

systems and let a0 C Q X Q' be a relation such that for

all aE A,aor oQ'>C Fa o Q>and

0 FaOQ>C Fa1'0 Q'>. Define n(X)=

aU, FaO X@ (Fa') 1 . Then a = f*(a0) is the unique

maximum generalized congruence relation between S and

S' such that a C a0. If S = S' and a0 is symmetric, then a

is symmetric. If S = S' Is single valued and a0 is an

equivalence relation, then u is a congruence relation.
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Proof: The operator 2 as defined in the theorem is clearly a dis-

tributive operator. By lemma 3, we see that a is the minimum rela-

tion satisfying aO and F o co (F') c a for eachaE A. The
0 a a

condition a a may be rewritten a a0. Hence, a O QFao >
-1 -I -1

_. 0 Fa'oQ'>CFa . oQ>. Also, a_ , so o0 FaoQ>

So0 
Fa * Q > C Fa' o Q '> . The condition Fa U 0 (f ') 1  C

-1

o is equivalent to Fa 0a o Fa' C. a, by the following argument:

Fa o0o (F a') Ca<=>Tr(Fa or o (Fa') oa ) =0<-=>
-- 1 -1 -1 -

Tr(ao Fa' 1 a o Fa )= <=->Tr(Fa o 0 Faa' o )0 <K >

F-1 a a o Fa' C- a. Thus, the two conditions are equivalent to a being

a generalized congruence such that a C a0. Since o is a minimum,

we see that a is the maximum such generalized congruence.

Next, we assume that S = S' and that a0 is symmetric. Hence,

a0 is also symmetric. Define recursively, ac r i 2(J), for
0 1i+1 =Oi U11

i=O, 1, ..... Taking ai as symmetric, so is S2(&.) from its defini-

tion, so a. 1 is symmetric, completing the inductive step. But, if

(q, q') is in U then (q, q') is in 9.i for some i and hence (q', q) is in

a.i C a. Thus, a is symmetric so a is symmetric.
1 -

Finally, we assume that S = S' is single valued and that a0 is an

equialence relation. Thus, -to is irreflexive. Let us assume in-

ductively that aI is irreflexive. Then Fa 0 i Fa is irreflexive

because F a is determinate. Hence, i(ai) is irreflexive and so is

'i+1 . Since each element ofa is in some ci, we see that a is irre-

flexive and thus a is reflexive. Now a0 is transitive so a0 o a0 C..aO.
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Because of Lhe symmetry of aO, this property is equivalent to

o0° 00 cC. o0 by the following argument: 000 o 0 0c a 0 0 --->
' -1-1)Wr(cro ao -~ 90) =0 <=.--> Tr(do 0 o- gO°0 r 0 <-=->

Tr(o0 0 00 <= - 1  0
Tr0 0 'go2Or < Oo 000 UO - 0 ->%aOro 0°0

Let us assume inductively that .i is transitive. We wish to prove

that a.-. its transitive so we write u+0 o00. or. oi-i1+1 1+1 1+1

S°a K i° Fa a i+i° ji u Ai+l°Fa i °aFaEAa e-A +!
Now, 7L i' so o cr. a. o a. r o.• by the transitivity of a..

Also, Iaa 0i0 Fa C 1+1 by the definition of oi+ and hence

Tr(F 0 u. F o 0 giving Tr(Fa 0 o F
oa 1 a 1 a I a 1

<==- Fa10or, i o F a.. But F is productive, so I C Fao F.
a~= F 1 +10  a-I~ 1 u a so - a ~ a

-1
Henceai+lO Fa CFao Fa IaQ lo FaFa o*i. Thus,

ari+l 1 Fa o or- o Fa C Fe0 a o- Fa ° F°
a~ 1 a aE a1 a U a aa aaE

This gives usa. or .i 0 U(1 F o oF =F o i+. Hence,
1+1 1+1 1 a EA

ai+.L is transitive completing our inductive step and the proof of the

theorem.

As was the case with our previous result, remark 9, this theorem

may also be regarded as defining an algorithm for finding a congru-

ernce relation 7 with the properties described in the theorem. It is true

that the algorithm may not always be finite, but in many practical cases

if may be shown to terminate after a finite number of steps. We shall

call this the Moore algorithm since the process was invenmte=d by E. F.

Moore for the case in which S is a finite monadic algebra and o is an
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equivalence relation. In this case a is a congruence relation and the

process terminates after a finite number of steps. Moore was able

to construct ad which is an epirnorphism and Sw which is the image

system under ad. He called Sw the "reduced machine."

1. 2.8 A pa-Ltial ordering on a set Q was defined in section 1. 1. 3

as a relation a C Q x Q which is reflexive, antisymmetric, and tran-

sitive. One example of a partial ordering is the relation C of set in-

clusion among a family J of subsets of a set T. We see that the

relation Ti C T. between two such subsets must be reflexive, anti-

symmetric, and transitive. Therefore, it is a partial order. This

means that any family of relations on the same pair Q X Q' of sets is

partially ordered by set inclusion. However, other examples of par-

tially ordered sets abound in mathematics and in everyday experience.

If a C Q X Q is a partial ordering and P is a subset of Q, then

we say that q is an upper bound of P iff (p, q) is in a whenever p is in

P. Similarly, we say q' is a lower bound of P iff (q', p) is in a when-

ever p is in P. A set P may or may not possess upper bounds and

lower bounds when a is any given partial ordering. However, an im-

portant special case occurs when every nonempty set P not only has

an upper bound and a lower bcund but it has a unique minimum upper

bound and a unique maximum lower bound, A partia, ordering of this

type As called a complete lattice. 'Spe.ifically, there is a unique upper

bound, cailed the sup~remum 3f 1' and written SuiXP), which has the

property that if q is any upper bound of P, then (Sup (P), q) is in .
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Also, there is a unique lowcer uound, called the infimum of P and written

Inf (P), which has the property that if q' is any lower bound of P, then

(q', Inf(P)) is in a.

In case it is only possible to assert that Sup (P) and Inf (P) exist

when P is finite, we say simply that a is a lattice, the adjective "com-

plete" being reserved for lattices in which it is known to be true in

general.

A notation thaL is frequently used with lattices is to write p U q

and p n q to represent the supremum and infimum respectively G! the

two element set {p, q}. A great disadvantage of this notation is that

the same symbols are used for set theoretical union and intersection.

When we discuss the partial ordering among sets in a family this no-

tation is clearly ambiguous because the set theoretical and lattice the-

oretical operations may not signify the same result. It will be neces-

sary to avoid such ambiguity by carefully explaining which type of opera-

tion is intended in cases of uncertainty.

A great convenience of the p J q and p n q aotation is that one

may derive simple algebraic rules which apply to lattices. The reader

may verify the following:

1. p n (q n r) =(p I q) n rand p u(q u r) =(p u )u r, associativity.

2. p q q=q :1 p and p u q = q U p, commutativity.

3. p p p- pand p u p = p, idempotence.

4. p n (p u q) = p and p 1 (p n q) = p, absorption.
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Many other identities may be derived. It is also possible to regard

the operations p U q and p n tt as fundamental and from their prop-

erties derive the properties, of partial ordering in a lattice. For

this purpose we may define a by either of the two rules:

5. p n q=p<=-> (p,q)E Ea, or

5'. p U q = q <-> (p, q) c a, both of which are equivalent.

By introducing this algebraic notation we have changed our em-

phasis from the set a to the set Q. From the point of view of the

operations U and n, a laýtice is an algebra whose carrier set is Q.

When the entire carrier set Q of a lattice has a supremum and

an infimum these elements are written I and 0 respectively. We

note that Sup (Q) = I and Inf (Q) = 0 always exist in the case of com-

plete lattices. These elements obey the special rules:

6. O0 p=Oandi up= I.

7. Ou p=pandIfn p=p.

If J is a family of subsets of a set T and I forms a lattice

er set inclusicn, then the relation T, T. between members -,'f
f -

, has the s- .me meaning in the lattice i and in the family of sets

_j However, the set theoretical union and intersection of a sub-

family J 'of •_., which we shall write as T) T ana T
T ' T't . .

respe,:tively may not bc. the same as the lattice thecretical Sup (&' ')

a, t Inf ( )
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Remark 10

We always have T' r- Sup (j ') and Inf (j Y)

T' 3' --E

T', if Sup (4 ') and Inf (2 ' exist. However,
T'E kr T

when U T' is in -4 then it is Sup ( '), and when
T 'E ,-'

T' is in U then it is Inf ( .
T'€ E j

Proof: Let T' be any element of 4 ' Then T' C. Sup (4') by the

definition of Sup (, ' ). Hence, taking the union over U', we obtain

T' r Sup If U T'isin * we see that it is an
T' E 'T I F

upper bound of ,/ '. Hence, TT : Sup (U ) by the defini-T E_

tion of Sup (4 ). This yields T' = Sup ( ) ) and one half of

T'E•'

the remark is proved. The second half may be proved by a dual argu-

ment.

Remark 11

The family of all ý-eneralizvd congruences a between two

relationa! systems S and S' forms a complete lattice under

set inclusion.

Proo. Since this set of generalized congruences is closed under set

the,orct W al union and intersect ion, wC may use remark 10 to show that

h, :LpICmum and illtimullL of aIwy fainily of generaliCed co, It.IncCe

h'tWc,,!l S andi S' must be just. the union and intersection respectively.

"l is. the jW()t)' 1 l.
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The following theorem is a generalization of a result due to

E. H. Moore (not E. F. Moore) and is useful in determining which

partially ordered sets are lattices.

Theorem 10

If ao C Q x Q is a partial ordering of Q such that every

nonempty subset P of Q has an infimum and Q has an

upper bound I, then a is a complete lattice.

Proof: To prove this theorem, we must show that every nonempty

subset P of Q has a supremum. Let P' be the set of upper bounds of

P. We see that P' is nonempty since I is an upper bound of P and

therefore a member of P'. Hence, Inf (P') exists and by its defini-

tion, we see that (q, Inf (P')) is in a whenever q is in P so Inf (P')

is in P'. Also, (Inf (P') , q') is in a whenever q' is in P', so Inf (P')

= Sup (P). This completes the proof of the theorem since P was cho-

sen arbitrarily.

It may be noted that the dual of theorem 10 may be stated ardJ

is equally valid.

Given two partial orderings al _ Q1 X Q1 and a2 C Q2 x Q2

such that QC.C_ Q2 and a, C - 2' we say that u1 is a subordering of

r;2. However, if a1 and 02 are both lattices we would not generally

assert that 01 is a sublattice of a2 because we regard a lattice as an

algebra. To illustrate this difference, let p q and p , q repre-
1 2

sent the supremum of tp, q in a, and 02 respectively. Cleariy,

(p q, p q) is in u2, but we cannot generally conclude that p q
2 1 1



45

and p u q are equal. The same comment applies to the infimum.
2

Thus, we shall only say that a, is a sublattice of a2 when the supre-

mum and infimum of any set in the first system are the same as the

supremum and infimum of that set in the second.

The following two theorems are analogous to results obtained

by Garrett Birkhoff concerning congruence relations on algebras

Theorem 11

The family : of equivalence relations 0 C Q X Q on a

set Q forms a complete lattice under set inclusion. If

is a nonempty subset of G , then Inf(( ) = n

and0Sup 0)*
0GE ("

Proof: We note that if ý2 is a nonempty set of equivalence rela-

tions, then 2 0 is an equivalence relation. Therefore.

0 = Inf (C. ). Furthermore, Q x Q is an equivalence relation
0 E

so 0- has an upper bound. Hence, by theorem 10, 0 is a com-

plete lattice under set inclusion. It is also not difficult to see that

Sup(d ) = ( 0)* because Sup(, ) .. Since 0)*
0 E C E GE$

is reflexive and symmetric and is the minimum transitive relation

including 0. it is the minimum equivalence relation including
OE C"

) 0. Thus the theorem is proved.
0 E
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Theorem 12

The family 2 of crngruence relations a 0C Q x Q on a

relational system S = (A, Q, F) forms a complete lattice

under set inclusion which is a sublattice of the lattice of

equivalence relations on Q.

Proof: Assume that L is nonempty so that the lattice of congruence

relations if it exists is nondegenerate. Then, if U is a nonempty

family of congruence relations oon S, we see that n1 cr is a con-
9 E

gruence relation because it is both an equivalence relation and a gen-

eralized congruence. Also, (Ikj o)*= (U I+ since each uE

is reflexive. From our results concerning closure of generalized

congruences under union and transitive extension, we see that

0) + is a generalized congruence and since it is an equivalence,

it must be a congruence. Hence, both Sup (() and Inf (2) are in ;.

so it forms a sublattice of the lattice of equivalence relations, ai.d

the theorem is proved.

It is interesting to compare theorem 12 with remark 11. From

remark 11 we see that the family of general.ized congruenccs on a sys

tern S forms a complete lattice under set inclusion. The subset of this

lattice consisting of all congruences is also a complete lattice under

set inclusion. However. the second lattice is not generally a subla'tice

of the first. i' is clear that the reason is that the union of a set of ecluiv-

alence relations is not generally transitive and hence not another equiva-

lence relation. Therefore the Sup ( C) over the lattice of generalized
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congruences may differ from the Sup (j) over the lattice of con-

gruences.



Section 2

Use uf Multiple Index Matrices in G3eneralized Automata Theory

2. 1 Introduction

An important generalization of automata theory occurs when one

allows the transition function of an automaton to have several argu-

ments. An ordinary automaton has a function f associated with each
a

input configuration a which maps the present state i to the next state j.

However, in the generalization, these functions may have several

arguments i(1),... , i(p) rather than a single argument i. Mezei

and Wright [31], and Thatcher and Wright [421 have shown that many

of the results of automata theory carry over in this generalization.

It is no longer reasonable to regard the arguments i(1),... , i(p)

as states of a machine, since we may think of a machine as possessing

only a single state at a given time. Nevertheless, it is likely that the

new automata theory will have greater and more direct applicability to

machines than the old, because the operations actually carried out by

computers do usually have several arguments, and it is muct more

natural and convenient to describe a computer in terms of the opera-

tions it can perform than by means of a state transition table or diagram.

Difficulties with this generalization have not been so much concep-

tual as notational. Thus, with the object of placing the entire theory

within the framework of modern mathematics, Eilenberg and Wright

[71 have represented the generalized automata as categories, drawing

heavily upon earlier work of Lawvere [261 in universal aigebra.

48
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In this paper we wish to describe an alternative method of

systematizing the treatment of generalized automata in a way which

we believe presents a number of advantages •

(1) The method is based on familiar mathematical notions which

are used frequently in switching and automata theory. It does

not require the introduction of category theory although category

theory may be applied to this as to many other mathematical sys-

tems.

(2) There is a convenient way of visualizing the constructions of

the system which enables one to anticipate results.

(3) The present approach is in some respects similar to the product

and permutation category (PROP) method described by MacLane

[29], but is based upon a single operation and permits the deri-

vation of such notions as direct product and its properties in

terms of this operation. Also, there is complete left-right duality

in the theory.

(4) There is a natural generalization to relational systems which

does not require the assumption of a distributive law with re-

spect to set union. A further possibility of generalization has to

do with matrices of numbers.
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2. 2 Multiple Index Matrices

If A is a matrix, then a13 is often written to represent the ele-

ment in the i-th row and the j-*th column of A. However, to avoid

cumbersome subscripts, we shall write [ i(l) ... i(p) aj(1) . j(q)]

to represent the matrix element when there are p row indices

i(1),..., i(p) and q column indices j(1), . . . , j(q). Our concern will

be with matrices in which all indices have the same range K, where

K is assumed to contain at least two elements. The matrix elements

are the Boolean quantities 1 or 0, i. e. truth or falsity, but most of

what we have to say applies equally well to matrices whose elements

are numbers.

We shall call the above matrix A a (p, q) index matrix and allow

p and q to be any integers greater than or equal to zero. When p z- 0

andq> 0 we callA a row vectorandwhen p> 0andq = 0wecall it

a column vector. If p = q = 0, it is called a scalar.

An alternative terminology derived from network theory is to

call p and q the numbers of input and output lines respectively. W2

can thus represcnt A as a box in the diagram below.

2 2. ,
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We interpret this diagram as a device or process A wh}ch re-

quires p signals or arguments, taken from K and denoted by i(1),...,

i(p), on the input lines 1,..., p respectively. It produces some con-

figuration of q signals or results, also taken from K and denoted by

j(1),..., j(q), on the corresponding output lines, such that the matrix

element [i(l) ... i(p) aj(1) ... j(q)] has the value 1, i. e. is a true

proposition. The sequence j(l), .. ., j(q) may not be precisely speci-

fied by this requirement just as the "next state" of a nondeterministic

machine is not precisely specified. and may be regarded as depend-

ing upon unspecified data or conditions.

Our basic rule concerns the formation of matrix product. Let

A and A' be (p, q) index and (p', q') index matrices respectively. Then

the matrix product AA' = B is defined by treating two cases.

Case 1. If q > p', then B has p row indices and q" = q' + p - p' column

indices. Each element of B is defined by the rule: [i(l) ... i p) bj(1)

j(q")j = i(l)... i(p) ak( 1).., k(p')j(q'+1) ... j(q")] [k(1) ...

k(p') a'j(1) ... j(q')j k(1) ... k(p') E K. A diagram representing thi,'.

case is shown below.

p q q

I 1

P 1q+
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Case 2. If q < p', then B has p" = p + p' - q row indices and q' column

indices. Each element of B is defined by the rule: [i() ...

i(p"1) bj (1) ... j(q')] = E[i(.) ... i(p) ak( 1) . .. k(q)]I [kx(1) ...

k(q) i(p+) .... i(p") a'j(1) .. j(q')] k(1) . .. k(q) F K.

In this case we have the following diagram.

p+lq+

p q

I

When working with Boolean matrices, we interpret sum and

product as union and intersection in the above expression. When using

strict logical notation if one regards each matrix element as a prop-

osition, one should replace the symbol E by 3, the symbol = by -- >

and insert & between the two elements on the right.

2.3 Linked Lines and Reduced Matrices

Let A be a (p, q) index matrix. Then, we shall say that the m-th

row index is linked with the n-th column index if and only if

(1) [i(l) ... i(p) aj(1) ... j(q)] = 0 whenever i(m) # j(n), and

(2) [ i( 1) . . i(p) aj( 1) ... j(q)] is independent of x i(w) = j(n)

whenever i(m) = j(n).
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If the p-th row index and the q-th colunin index are linked, then

we may reduce A to a(p- 1, q- 1) index matrix A1 in which the element

[i(1) ... i(p- 1) a j(1) ... j(q- 1)] is simply taken as equal to the element

[i(1) ... i(p- l)x aj(1) ... j(q- 1)x] which is the same for all x in K. A

reduced matrix is one in which the p-th row index and q-th column in-

dex are not linked. It is clear that to any matrix A there corresponds

a unique reduced matrix Ar obtained by repeatedly eliminating the

highest numbered row and column indices until this is no ý.onger possible.

Two matrices may be regarded as equivalent if they have the

same reduced matrix. It is possible to show that this equivalence rela-

tion is actually a congruence relation with respect to matrix multipli-

cation. That is to say, we obtain equivalent results regardless of

whether we multiply two matrices or their reductions. Thus, in the

remainder of this abstract we shall work with these congruence classes

of matrices, generally using reduced matrices as representatives of

wiieiK••- classes. In particular, we shall take the numbers p, q associated

with any class to be those of the reduced representative of that cl ss.

A diagram corresponding to a congruence class of matrices may

be drawn as follows.

p+2 q+2- OQ

P Aq "

p€

1
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The box labelled A corresponds to the reduced representative of the

class. Above this box we imagine an infinite number of lines corres-

ponding to the linked indices of other members of the class. Any in-

put sigral or argument on a lhie numbered n> p will pass ur.',hanged as

a result on the linked output line numbered n- p+q.

2.4 The Group

Let )be the group of all finite permutations of the set of all

natural numbers {1, 2, ... }. We can construct a set /ZL ol multiple

index matrices which is isomorphis to 4 with matrix multiplication

corresponding to the group operation. This construction is possible

for any given index range K of cardinality two or greater.

Let S be a permutation in , which leaves all numbers greater

than n fixed and maps 11, 2,..., r} to f SrVS2, ... , Sn}. We construct

a corresponding matrix H with p = q = n whose matrix elements

[i(1)... i(n) hi(s 1)... &,(sn)] are 1 for any sequence i(1),..., i(n) in K,

and whose other matrix elements are all 0.

It may be shown that each row index number m of His linked to

the column index numbered sn.. Thus, on our diagram H is an opera-

tion corresponding to a scra.mbling of the lines when passing from i'l-

put to output as given by the permutation S. It is possible to prove

that matrix multiplication of members of 9 corresponds to the product

of the permutations. Note that the members of • are not permutation

matrices in the usual sense since they do not permute the members of

K hut rather the indices.
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As a converient set of generators for ,Z" we shall choose the

matrices 7 corresponding lo the cyclic permutations (12 ... n) ofn
m

the first n natural numbers. We shall write 71 for the m-th power

of 7. A iagram for 7 m may be drawn as follows.

n n

n n

n-m+ 1m+1

n-m m

1 1

2. 5 Relational Systems

The importance of the group S in connection with multiplication

of multiple index matrices should be clear since by choosing a suitable

member 1 of 2i we may make any connection AHB of output lines of

A with input lines of B.

Define a relational system , as any set of multiple index ma-

trices with some common index range K. called the carrier and with

the following two properties:



56

(1) • is closed under matrix multiplication

(2) is a subset of6• .

It is possible to show that matrix multiplication is associative so

is a semigroup. Also, 2v is a group whose unit element is the scalar

1 which is a unit element for 1. Thus, /' is a monoid or semi-

group with a unit.

Using the definitions given earlier we may prove the commuta-

tion law: AnT÷p A'q, = q 7pp, A'rp., A. A pictorial represen-
qi+.p, q+q p+p, p+qI

tation of the left and right sides oi this equation is shown on the follow-

ing page.

The direct product A 0 A' is defined to be the quantity appear-

ing on either side of this equation. An alternative way of representing

A 0 A? is by the diagram shown below.

p+l a+1

Ip q

It is possible to prove that direct product is associative and that iA has

various other properties.

An important special case of a relational system is that of an

algebra. Each matrix R in , is then single valued in the sense

that for every sequence i(l). .... , i(p) in K. there is exactly one sequence
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j(l), ... ,j(q) in K such that [i(l) . i(p) rj(1) ... j(q)] = 1. All other

matrix elements have the vahle 0. Furthermore, I can be generated

from , and a set. 0of matrices with q =1.

For example, a semigroup may be generated from a single iM-

nary operation. Letting B denote this operation, we see that p = 2

and q = 1. The associative law may be written: BB = 773 B iT2 B. To

describe a monoid we include the unit element E as an operation with

p = 0 and q = 1. The unit rules are EB = E7 2 B =e. Here, e denotes the

unit of VK rather thain the unit of the monoid being described.

2.6 Relational Semigroups

A relational semigroup (RSG) is a slightly more abstract entity

than a relational system. It is defined as any semigroup J with the

following thr--e properties.

(1) c$ contains the subgroup - consisting of all finite permutations

of the natural numbers. Also, the unit e of ;7 is the unit of .

(2) Associated with each member T of , there are two integers p(T),

q(T), both > 0, which obey the following rules.

(a) p(TT') < max (p(T), p(T') - q(T) + p(T))

(b) q(TT') < max (q(T'), q(T) - p(T') + q(T'))

(c) p(TT') - q(TT') = p(T) - q(T) + p(T') - q(T')

(d) V(e) = q(e) = 0. and p(S) = n,

where S is any element of ; and n is the largest number not fixed un-

der the permutation S. Note that (a) and (b) are equivalent because of

(c).
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(3) The commutation law holds. In a formal statement of this law, we

should replace each of the elements of N/ Ly a corresponding element

oi ' . I

It is possible to show that to every relational system there

corresponds an RSG defined in the obvious way with each matrix of

the relational system corresponding to an element of the RSG. It is

an open question whether to each RSG there corresponds a relational

system.

Let and J 'be two RSG's. Then any mapping h:J -J '

with the following three properties will be called an RSG homomorphism.

(1) h preserves the product operation, i.e. for T1 and T2 in

h(T 1 T 2 ) = h(Tl)h(T'9 ).

(2) h is the identitj map frcrn in J to 41 in j'

(3) a. p(T) > i(h(T)),

b. q(T) > q(h(T)),

c. p(T) - q(T) = p(h(T)) - q(h(T)), for T in J. Again,

a ard b are enuivalent because of c.

If there is a homomaorphism h from an RSG & onto the RSG of a

relational system then we shall say that •. reprsnts s

Each T in •. will be said to represent its image h(T) in .c-.

The triple (h, , .• ) may be regarded as analogous to a ma-

chine in ordinary automata theory. Here, an element T of corres-

ponds to an input sequence. RIs image H(T) is the Boolean matrix des-

cribing the set of all pairs (i. j) such that T causes the transition from

S. . .
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state i to state j. There are also elements of J whose images are a

row vector and a column vector corresponding to the sets of initial and

terminal statei respectively.

It may be noted that an ,SG plays the same role with respect to

a relational system as does a theory to an algebra in the Eilenberg and

Wright development [7].

A subset r of an RSG J will be called recognizable if and only

if J represents a relational system v' with finite carrier K such

that r represents just the true scalars in ,7 . We may show that this

type of set is a generalization of a regular set in the automaton case.

Similar closure properties may be proved to hold but the proofs are

more difficult and not simple generalizations oi the proofs in the auto-

maton case.

Let ;'• be a relational system with c .rrier K and f any mapping

from K onto some set K' . Then, for each matrix R in • we may

form a matrix R' on the carrier K' letting [i'(1) ... i'(p)r'j'(1) ... j'(q)] =

ori(1) ... i(p) rj(1) ... j(q)], where the sum is taken over all matrix

elements of R such that f(i(l)) - i'(1),..., f(i(p)) = il'(p), ,kJ(l)) =

j'(1), f(j(q)) = j'(q). If the image n.y' of t.' is a relational sys-

tem and if the corresponding mapping is an RSG homomerphism, then

we shall call f a relational system homomorphism from XA to

A somewhat different definition of homomorphism has been given
by Yeh [461 for relational systems generated by (1, 1) index matrices.
His definition is more general in some respects and less general in
others but fails t,-, possess input-output symmetry.
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Again, if we are given a relational system ' with carrier K,

then we define a subset G of K to be recognizable if and only if there

is a relational system homomorphism f from X to a relational sys-

tem /' with finite carrier K' such that G consists of just those ele-

ments mapping to a given suiz-t G' of K'.

In the case in which A is an algebra the above definition may

be shown to be equivalent to that given by Mezei and Wright [31]. Clo-

sure results continue to hold, however, in this generalized case.

An important and interesting question concerns when the homomorphic

image of a recognizable set is also recognizable. A partial answer to

this question has been found.

2. 7 Free Relational Semigroups

Let 9 be a set of letters w with a pair (p(w), q(w) of nonnegative

integers associated with each w in Q. We may then form the free RSG

generated by S which we write t4(Sl). It has the property that if h is

any mapping from S to an RSG S such that p(w) > p(h(w)),

q(w) > q(h(w)), and p(w) - q(w) = p(h(w)) - q(h(w)) then h may be ex-

tended to an RSG homomorphism.

One may interpret each element T of A(n) as a combinational

network composed of blocks with labels w taken from n and having p(w)

inputs and q(w) outputs. The network itself has p(T) izipvts and q(T)

outputs. Each input of a block is either an input of the network or else

connected to an output of one other block. A similar rule holds for out-

puts. If ,.(n) represents a relational system ." , then for any T in
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V7 (n) we may regard the image h(T) in as the operation carried

out by the network T.

Another application of ý(/w is to language theory. T,et a con-

sist of a set LIT of (0, 1) symbols A, a single (2, 1) symbol B, and a

(1, 0) symbol C. Then, we may use 4(sl) to represent the free semi-

group J (LTC ) generated by JJ . Each A e Uc represents a row vec-

tor with a single unit corresponding to that generator in ,/ (,i' ), the

element B represents the concatenation operation, and C represents

a column vector consisting only of units. Since {(J• ) is an algebra,

ech row vec. - contains a single unit and represents the element or

elements P" :-,7 ) corresponding to the positien of that unit.

if 4" is recognizable on 9i(fl, then the row vectors R such that

RC is represented by a member of r are just the strings in a context

free language. Conversely, for every context free language on I(J')

tihere is a recognizable F on ,'(SI '. The finite relational system

which is used to recognize F is just the context free grammar of the

language. Productions in this grammar constitute a list of the unit

(or true) r.iatrix elements. The matrix element [i(l)i(2)bj(1)J = 1 of

B is written as a production j(l) - i(Il)i(2), and the matrix element

[aj(1)] = 1 of A t Jr is written j(1) - A where A is taken as a terminal

symbol. Finally [i(l)c] = 1 of C is written C - i(1), where C is the

initial symbol. This difference in convention is of little consequ•,•cc.

However, we may note that the elemrents of F may be regarded as

trees, or brAacketed strings while their images in.,/ (L7 ) nave had



63

the brackets removed.

Another interesting avenue of study concerns relational systems

in which the group 'A, is augmented by certain other matrice3 and the

closure is taken under matrix n' ultiplication. One such matrix is the

column vector consisting entirely of units, already mentioned in con-

nection with languages. A nother is the bifurcator or (r, 2) index ma-

trix F in which [i(1)fj(1)j(2)] is true if and only if i(l) = j(1) = j(2).

In the system of Eilenberg and Wright [71 both these operations are

implicitly assumed. Finally, a third matrix is one which may be

thought of as a union. This is a (2, !) index U in which [i(1)i(2)uj(1)]

is true if and only if either i(l) = J(1) or i(2) j(1).



Section 3

Asymptotic Decomposability of Machines

3.1 Introduction

Series-parallel decomposition of sequential machines has been

studied extensively from the point of view of the decomposition of

specific machines [18, 23, 47]. Putzolu [36, 37] has recently obtained

results concerning the likelihood that randomly chosen machines ad-

mit this decomposition. His analysis treated the case in which a

state behavior type of realization was assumed and decomposition in-

volving state splitting was not permitted. In the present paper we at-

tack the analogous prnblem in which state splitting is allowed.

For definiteness and convenience we define here some of the

concepts which -will be needed in our study. Let Ini represent the set

{1, . . ., ni, when n is any positive integer. Define a machine with n

states and p inputs as any mapping 6 from inil x [pD to InD, and write

nIni x jpI to represent the set of all such mappings. Following

[181, a decomposition of 6 E [nifni X IpI into two machines

E I[n 1 n and 26 • •n 2Iin 21XInpt is specifiea ,y giving a

mapping h from-a subset of In11 x [n 21 ontc inji such that whenever

i = h(jj k) and xe jpý., then h(. 1 (j, x), 6 2 (k, (j-1)p+x)) is defined and

equals 6 (1, x). A dec.omposition of 6 into more than two machines is

defined and equals Z (i, x). A decomposlLion of 6 into more than two

machines is defined recursively as the result of further decomposing

either 0 or 62 or both and repeating an arbitrary number of times. An

64
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r-component decomposition is one which results from the performance

of the basic decomposition process r-1 times and therefole yields r

machines. We need not formulate here the well known associative

principle which permits one to speak of the decomposition of 6 into r

machines 61,... 6r without specifying the steps by which they were

obtained. We shall say that 6 is non-trivially decomposable if it

admits an r-component decomposition in which each of the resulting

r machines has fewer states than 6.

If one is interested only in state behavior realizations, then the

mapping h is always taken as one-to-one. In this case to determine

whether or not a ml, 'Iine is nontrivially decomposable one need only

consider 2- component tie-ompositions. However, in the more general

c:- I*e treated here there is no such restriction.

3, 2 A Criterion for Decomposability
S[n•]J •×••[ru ahn fec

A machine 6 E H nj x is called a group machine if each

restrict•,on 6 ( . x) is a permutation of [nj. From any machine 6

we may derive a group machine 6 ' by the simple expedient of letting

6 '( x) = 6 ( , x) if 6 ( , x) happens to be a permutation and letting

6 , . x) be the identity map otherwise. We note that the corresponding

group machine is the same as the original machine if and only if the

original machine is a group machine.

Theorem 1

A machine 6 is nontrivially decomposable if and

only if the corresponding group machine 6 ' is

nontrivally decomposab)e.
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This theorem may be easily proved using results of Krohn and

Rhodes [23] or of Zeiger [47]. Therefore we do not present a formal

proof here. In following the construction of Zeiger one may decom-

pose the machine 6 into components 6 1 and 6 2' where 6 2 has fewer

states than 6, and t, 1 is a permutation reset machine of the same num-

ber of states as 6. The permutations of 6 1 correspond to those of

6 ' and one may then show that to any nontrivial decomposition of 6

there is an isomorphic nontrivial decomposition• of 6

As a corollary to theorem 1 we have the result that if

6 E ••n n j × is a machine of n > 3 states such that for no input

x E ipf is a ( , x) a permutation, then 6 is nontrivially decomposable.

It is this corollary which is required in the proof of theorem 2 in the

next section. We note that in Zeiger's constructio.,, if 6 ( , x) is never

a permutation, then 6 is a reset machnne. Then, any nontrivial

partition on inf -n 11nlI has the substitution property for 6 1" Hence

1 (and consequently 6) is noutrivially decomposable.

3. 3 Decomposability of Randomly Selected Machines

hi this section we shall be concerned with estimating what frac-

tion of the set Pnkni- - p is r'ontriviaUy decoriposable, and in par-

ticular shall investigate the way this function of n and p behaves as n

and p approach a.



Theorem 
2

If Pn 1/e2 - 0 as n -oo, then the probability ap-

proaches 1 that a machine 6 will be nontrivially

decomposable if it is chosen at random from

Proof: If6 E EniinIx n< ×p is a machine such that for no x [ E[pI

is 6 ( , x) a permutation then 6 is surely decomposable by the fol-

lowing reasoning. Since n > 2 and 6 '( , x) is the identity function

Ibr all x, we may decompose 6 1 in any way we wish using state be-

havior realizations and identity functions for the components. By

theorem 1, 6 is thus nontrivially decomposable. Now there are nI
n

permutations and n mappings of [ni into inD so the probability that

no mapping 6( x) be a permutation is (1 n!) P. However using
n

n! > 1 -1 -- nl e
Stirling's formula, we have (1 - n)p > I n!n: = 1 - V p11/e

n n
(1 + 0(-)) - 1 as r. - 0o. This completes the proof of the theorem.n

Lemma 1

The fraction of all permutations of n letters in which
[n/m]

no cycle has a length divisible ty ni is 11 (I
i=n1 (

Proof: Write T m(n) for the number of permutations a of inD having

no cycle with a length divisible by m. For r - m, if the cycle con-

taining the letter 1 has length r, then there are Tm (n-r) ways in which

the remaining cycles may be chosen. The cycle containing 1 may be

chosen in (n-l)!/(n-r)! ways. Hence. there are



68

m-1
Z [(n-i)1/(n-r)!]Tm(n-r) permutations of type a in which the cycle

r=1
containing 1 has length less thar. a. Now, the cycle containing 1 must

not have length m, but if it has length greater than m, then we may

treat the portion of this cycle consisting of 1 and the chain of m let-

ters following 1 as if they were a single letter. This chain may be

chosen in (n-I)!/(n-m-1)l ways and following its choice there are

Tm(r-m) ways in which the remainder of the permutation may be cho-

sen.. Thus, we obtain

m-I
Tni(n) = Z [(n-1)!/(n-r)1Tm (n-r) +I(n-l)!/(n-m-l)!]Tm(n-m).

r=1

This difference equation has a unique solution subject to the ccnditions

that T (1) = 1 and T (0) = 1, where it is assumed that coefficients forM m

terms in T m(n-r) vanish when r > n. To prove the lemma, we show that

n

T (n) = n! II (1 -1--) is a solution to the difference equation.m 1i=1

We may check directly that T m(n) = nI when n < m and also

T (inm) = (m-1)(m-1)1. To justify our formula when n > m it is

more convenient to derive the following (m+l)-st order difference

equation:

nT m(n-l)-Tm (n) = [(n-1)!/(n-m)I1(n-m-1)[(n-m)T (n-m-l)-T (n-m)].

n1

Substituting T (n) = ni 11 (1 - we may check that both sidesm M ii=1
vanish when n is not divisible by m. Otherwise both sides have the
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n-1
value (n-l)! H (1 -I-). No spurious solution is possible since

i=j i

the first m+1 points agree with the solution to our original equation.

This completes the proof of the lemma.

An immediate consequence of this lemma follows from the fact

that when m is a prime or a power of a prime, the order of a permu-

tation is divisible by m if and only if it has a cycle v hose length is

divisible by m. In this case, there are exactly

T (n) = n! II (I - -) permutations of n letters whose order is not
d b b i=

divisible by m. In our application the exact formula is less convenient

than an asyruptctic expression which may be derived as follows.

[n] 1
([n] iiH (i- ik) [ 1.i]

1 i=M m
i=l II (

1
nj m

r (i- )

The asymptotic result holds when m remains fixed and n - o, see
1

reference [431. Also, n! vl~i n~ (-3), so we have

1 11eTmn)~m m (- n) nn

Ti- (()•
r(1 -- )

in
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In particular, we obtain:

1

2(-( and T3 (n) -2.67n e

The second of lhc. . .,'ressions is used in the proof of theorem 3.

A group G of permutations on a set jnj of n letters is called

imprimitive [161 if t here is a nontrivial partition on jn1 into disjoint

subsets sl, ... , sr with the substitution property [18]. This means that

for all g e G and sets s. in the pkrtition, there is some set s. in the1 3

partition such that sig C. s.Y Since G is a group, one can easily show

that actually sig = s.Y If there is no such partition, then G is called

primitive and we have the following lemma.

Lemma 2

Two randomiy chosen permutations on a set of n

letters generate a primitive group with probability

approaching I as n approaches co.

Proof: Again write [nl = {1, .. . , n} for the set of n letters to be

permuted, and let a and y be chosen randomly from the set of n! per-

mutations of I n. We see that the group generated by a and y is imr-

primitive if Fn, .an be partitioned into two nonempty sets of cardi-

nality n1 , and n-n 1 such that a and y both permute the letters of these

sets among themselves. Partitions of this type will be called ser.tra-

ble, and we see that there are (n1 ) 2((n-n I)2 ways in which a and)

may be chosen so that the partition into two such sets is separable.

While it is clear that for a given a and y there may be more than one



71

separable partition, we have the upper bound

2 n 2 21 n)(n11)2 ((n - n 1) If
n =1 1

number of ways a and v may be chosen so as to allow [nil to

2
have a separable partition. Thus, of the (n!) ways to choose a and

y fte fraction allowing a separable partition is no greater than

L n(n-_n)!\' nl.1 1 2
L n! The first two terms of this sum are I +n- 2

n1=1

nn

while the [ ] - 2 remaining terms are each no greater than 6~n1)(n2)

[.2 n I!(n-n 1 )! 1 1
We may therefore write VL 1 n! 1andweob-

L:- n! =n + ()1 adw

nl=1 n

serve that this bound approaches 0 as n approaches oo.

Even if there is no separable partition of Fint there may yet be

a partition with the substitution property. For this to occur, each

class in such a partition must be capable of being mapped into any

given class by a suitably chosen pernutation in the group generated by

a and j,. Hence, all classes must contain the same number of letters.

Let n1 be the number of letters in a class and a the number of classes.

Then n =a n where 1 -a, n1 and there are ways of form-
a!(n !) a

ing such a partitio-i. For any given partition ot this lype the permutations
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a and y may together be chosen in [al(n 1 )a]2 ways so that the sub-

stitution property is satisfied. Thu. nI al (nl 1 )a is an upper bound

to the nurmber of ways that a and y may be chosen so some partition

into a equal classes has the substitution property. The ratio of this

bound to (ni)2 may be written

(n1 1)a 1 2 2 2 3 3 3

(a+i)(a+2) ... n ,a---)Ca-+ ... € (a-T) ( -2) ... €r-) ...

n1 n n1

Sn-"T) n-a+2-)... nff)

We have taken a > 1 and as a consequence no factor in this product
2

may be greater than 2 and an upper bound to the product is there-3

2n-a
fore (i) < .Since the number of possible qhoices for n

2~clearly cannot exceed n, there is the upper bound n(w) to the

probability that for randomly chosen permutations (' and-,' there is

a partition with the substitution property which is not separable. Since

this bound also approaches 0 as n approaches co the proof of the lem-

ma is complete.

One may conclude slightly more than iz contained in the state-

ment of the lemma if a trivial refinement is made in the proof. The

actual fraction of the pairs a,? having a separable partition with

n =1 is lss than but is asymptotic to I as n - c. Thus, we see

that these partitions account for almost all cases in which the group

generated by a a,-' ;mpromitive as n - x. The probability that

1'
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this group, vill be imprimitive is thus asymptotic to

Theorem 1

n~-n
If pn e - o as n - ao, then the probability approaches

0 that a machine 6 will be nontrivially decomposable if

it is chosen at random from [nil'"]× >IP.

Proof: By the theory of Krohn and Rhodes [231, if there exist inputs

x e jppf such that the corresponding mappings 6 ( , x) are permutationsh which generate the alternating group A on nJ4 letters, then the ma-
t n

chine 6 is indecomposable. This fact follows because some compo-Ii nent in any decomposition of 6 must have an input semigroup with a

subgroup which is the inverse homomorphic image of A n. Therefore,

this component must have at least n states, so 6 fails to satisfy our

criterion of nontrivial decomposability. We shall show that the prob-

ability approaches 1 as n approaches o that An is a subgroup of the in-

put semigroup of 6.

Let s be any permutation of I nl which cyclically permutes some

•'Ot {i, j. k} C lni of three states and produces a permutation of some

order v on the remaining states which is not divisible by 3. Then s

may be used to generate a cyclic permutation t of {i, j, k}, since we may

take t=sv' which cyclically permutes {i, j, k}, leaving the remaining let-
trrs fixed. We compute that there are n(n-1)(n-2)

t~r fied.-*- ----- cyclic perm utations

of some set {i, j, k} C Ino. Furthermore, for each such permutation

there are T3(n-3) permutations of the remaining states whose order v

is not divisible by 3. Hence, there are n(n-l)(n--2) T (n-3) perL.utations
-33
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of type s. By lemma 1 and the asymptotic expression for T 3 (n) de-

rived from it, we have

1
1 1-3

T3 (n-3) - K(n-3) •(3 ) n-3 - K n6 (n)n, where K =- = 2.67.
3e e2

1

Thus, n(n-1)(n-2) T -)K n' n n
~- () . The probability that none of

the first I~1 inputs yields a permutation of type s i. therefore

- [• n(n-1)(n-2)T 3 (n-3)

n(n-1)(n-2)T 3 (n-3) 3 nfl

3 n nI

K 6 -n- jpn e

-e -0, as n- co.

Hence, the probability approaches 1 that at least one of the inputs

x j (V L yields a permutation s = 6 ( , x) which may be used to gen-

erate a cyclic permutation t of three s ites.

The probability also approaches 1 that each of the two sets

I [2•I, -•[] and Epi - I- j 2 contains some input yielding a

permutation because these sets contain on the order of inputs.y

lemma 2, we note that two ra&%mly chosen permutations of anp gen-

erate a primitive group G with probability appruaching 1 as n approaches

ao. Hence. we assume that a primitive group G on InD is generated from

two ot the inputs in 9pO - I [•1 I and that a cyclic permutztion t of three

states is gene rated from one of the inputs in a [SPI D.
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Let J. be the set of all elements of the group G U {t} which

cyclically permute three states, leaving all others fixed. It is known

[16] that if I contains all such cyclic permutations, then A is a sub-n

group of G u {t}. Define e C nýn x InI as the set of all pairs (i!, i2 )

both lying in soine cycle of an element of 'a-. Then 0 is an equivalence

relation since if (il, i2 ) lie on a cycle of tI and (i2 , i3) lie on a cycle of

t then (i, 3) lie on a cycle (il '2 '3) = ti t2 1 t 2 if the third mem-

bers of the cycles for (iI, i2 ) and (i2, i3) are distinct and on a cycle

(ili 2 i3) = t 2t1 if the third members are the same. This construction

shows us thaz whenever iI, i2 , and i3 are in the same 0 class, then

the cycle (ili 2 i3 ) is in Z1 . Also, 0 induces a partition ot [n} which

has tile substitution property with respect to G. For, let g be any ele-

ment of G, then (il, i2) E 0 with corresponding t, E '4-, we see that
j

g -tlg is also a cyclic permutation in g for the pair (i1g, i2g). Conse-

quently (ilg, ,2 g) is in 0. But G was assumed to be primitive and /-

is nonempty since it contains t, so •. must contain all cydAic permu-

tations of three states. Thus, 'J generates An, with probability

approaching 1 as n approaches 0o. This completes the proof.

3.4 Additional Remarks

The condition for nontrivial decomposability stated in section 3. 1

applies to each input of a machine separately. Therefore, for fixed

n. the probability oi nontrivial decompos.bility can never increase as

p increases. However, the theorems of section 3. 3 fail to provide in-

iorn,ation concerning the probability of nontrivial decomposability in'

!,
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certain cases as indicated by the following corollary to theorems 2

and 3.

Corollary 1

n-ln pIfnln n approaches a limit I as n approaches oo then

the probability of nontrivial decomposability approaches
1 1 i

1 if I> and approaches 0 if. .V
•n -in pý

Proof: If lim ( n I . -',, then for some e > Oandn 0 we have
n-o 01

n-ln p 1 •>n Hne -n
n p + e whenevern _n Hence, pn e - 1/n6 and since

l0 e -0 as n -oo, we may apply theorem 2. If lim ,In nf <•1

then for some e > 0 and nO we have jn-n p <I - e whenever
1

n>_n 0 Hence, pn9e-n > n and sincen a-asn- o, we may

apply theorem 3. This c-ompletes the proof.

We note that nothing is known about the case in which f lies in

the range f K < . It is conjectured that this "gap" is removable

and that a more delicate pair of theorems similar to 2 and 3 is valid

in which- the same exponents of n appear. In particular, it seems

1

possible that the condition p n e - oo may be sufficient to obtain

the conclusion of theorem 3.

CorollaM2

If I approaches a limit I' as n approaches wc, then

the probability of nontrivial decomposability app: Jaches

1 if f' > 1 and approaches 0 if V < 1.
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This result follows easily from corollary 1, and permits one to

compare the probability of this type of decomposition with state be-

havior decomposition. In [36, 37] it is shown that the limiting value
In n.

of - is an appropriate quantity to consider in order to determine

whether the limiting probability of nontrivial state behavior decompo-

sition is 1 or 0.

Another question of some interest concerns whether or not a ma-

chine 6 is nontrivially decomposable into just two components 8 1 and

6 2' each having fewer states than 6. As was pointed out in the intro-

duction, a machine may be nontrivially decomposable without being

nontrivially decomposable into two components. An example is the

universal 4-state machine which is decomposable into 4 components

of 3, 2, 2 and 3 states, but not into two components each of fewer than

4 states.

According to [lul a machine admits a nontrivial 2-component

decomposition if and only if it admits a nontrivial set system decom-

position.

Using methods similar to those used in the proof of theorem 2,
n-ln p 3sno•te frayk>O

it is possible to show that if TIn 2- a 3

the probabiilty that a randomly chosen 6 c< nEJ nD × [P] admits at

least k nontrivial SP set systems approaches 1; correspondingly, the

expected number of nontrivial SP set systems of a machine approaches

00.
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An unsettled question is whether set system (i. e. 2-component)

nontrivial decomposability is'almost surely satisfied if

3 n-Ir p 1
<_ - <- as n - o. It is hoped that further studies may pro-

vide answers to some of these questions.



Section 4

The Recognizability of Equational Sets

Automata theory and the theory of formal languages are closely

related: automata recognize, parse and translate languages; languages

are used to program and describe automata. This research is con-

cerned with some specific results relating the generation and recog-

nizability of languages.

It is well known to automata theorists that a language is gene-

rated by a left linear grammar iff it is recognized by some finite au-

tomaton. In this case, there is an effective process whereby one can

find a deterministic system (i. e. finite automaton) which recognizes

the language generated by a non-deterministic system (i. e. left

linear grammar). It has been shown by Mezei and Weight [311 that

this effective process can be generalized to any case where the lan-

guages in question are subsets of the set T of all fully parenthesized

legal algebraic expressions or computation trees on some fixed set

of operator symbols 12 (each symbol in 0 has a given constant spec-

ifying the number of operands required). In this generalization,

"generated by a left linear grammar" is replaced by "generated by a

context free grammar which allows only legal algebraic expressions

(on Q and some finite set of nonterminals) to be substituted for non-

terminals. " (Such sets are called equational by Mezei and Wright [31],

granimatical by Muller [331, and algebraic by Eilenberg and Wright

[20k They might also be called algebraic context free languages.),

79
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"it is recognized by some finite automaton" is replaced by "it is the

inverse homomorphic image in T of a subset of a finite algebra on

17." (Such sets are called "recognizable" by Mezei and Wright [31],

and "finite tree automaton definable" by Rabin [38]. Notice that T mt-st

be made into an algebra on n for !homomorphism to be defined; this

can be done in a natural way, and the resulting algebra is called the

generic algebra on Q.

The definitions of equationality and recognizability can, in fct,

be made in any algebra aX on 0. Equational sets in X( are precisely

the homomorphic images of equational sets in T. Recognizable sets

in XC are the inverse homomorphic images in c7 of subsets of fi-

nite algebras on Q. It is now of interest to ask for which algebras

the equational sets and the recognizable sets coincide.

In any finitely generated algebra, recognizable sets are equa-

tional. However, in a finitely generated free semigroup the equational

sets are the usual context free languages while the recognizable sets

are just the regular events. Hence there exist finitely generated a.lhe-

bras in which not all equat" ,aal sets are recognizable. Thus the fol-

lowing conditions on a fiiitely generated algebra Or on 9, each of

which by itself implies that the equational sets of G( are recognizable,

are of interest:

1) o-7 is isomorphic to a generic algebra modulo a con-

gruence pG defined by an algebraic phrase structure

grammar G by (x, y) e ifrx -=> andy > x. (See
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Ginsburg [15] for definitions of phrase structure grammar

and r> when the strings being opera*,.d are legal alge-

braic expressions on 0 and some set of nonterminals, G

is called algebraic iff the rules of G allow only replace-

ment of one legal algebraic subexpression by another).

This condition incluies the case where OT is finitely pre-

sentable on a generic algebra. The following is used in

the proof of sufficiency: Theorem: Every algebraic phrase

structure language in a generic algebra is equational.

2) 3Z is isomorphic to a gealeric monadic algebra modulo a

congruence which is a binary transduction. (See Elgot and

Mezei [8] for the definition of binary transduction.) This

includes the monadic case of (1) but is not included by it,

as may be seen using a monadic algebra with idempotent

operators. The latter is of interest in asynchronous switch-

ing theory. The condition above has been generalized to

non-monadic algebras.

3) c" is a subset of an algebra & on some set WV of opera-

tor symbols, where the equational subsets of ,& are recog-

nizable, and where certain relations hold between the opera-

tions defined on O by SI and the operations defined on

by 0'. This resilt is due to Muller [331.

If the equational sets of an algebra 07 are recognizable, then

all word problems on J( are solvable. The converse, unfortunately,
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does not hold.

It is thought that these results have some implications for paren-

thesis languages, loop free parallel computation, data structures

(lists in particular) and possibly other areas.



Section 5

Algebraic Isomorphism Invariants for Transition Graphs

The material presented here summarizes and concludes re-

search already appearing in the 1966 and 1967 annual reports. In

the meantime these results were issued as Systems Engineering

Laboratory Technical Report No. 21, "Algebraic Isomorphism In-

variants for Transition Graphs," where full proofs and bibliographical

references are to be found. Heie an effort has been made to present

in a self-contained and compact form the more significant results.

A transition graph G is a finite, directed graph such that every

point of G has outdegree 0 or 1. (By a directed graph G = (X,y) we

mean the graph of a relation y on a set X. Thus "loops" are permitted.)

Thus G = (X,y) is a transition graph if and only if y is a partial trans-

formation on X. Accordingly, we say that a transition graph G = (X,Y)

is a transformation graph if y is a (complete) transformation on X

and that G = (X, -y) is a permutation graph if -y is a permutation on X.

The composition G a G' of two graphs G = (X,-y) and G' = 'X, y')

(G and G' are defined on the same set of points) is the result of com-

posing their lines, i. 9.

G. G' = (X, yy')

where y7),' is the composition of the relations -y andy'.

Let An denote the set of all digraphs on the points

Nn 2 .... , n}. Then obviously (,•Ln, o) is a semigroup. If

further we let 'N'> n(F) denote the multiplicative semigroup of linear

83
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transformations on an n-dimensional vector space V over a field F,

the natural representation of An relative to F and some represen-

tation basis f = {a 1 ,a 2 ,... ,n} (a L is any basis for V) is the

function:

P: An - 7",(F)

where p(G) = TG is defined as follows:

I if (i, j) 6
n

aiTG =Za • a.aj where a =

0 otherwise,

for all ai 6 6 . (Thus, the natural representation of An relative

to F and J is simply a linear transformation equivalent of the usual

representation of graphs by adjacency matrices. More precisely, if

the adjacency matrix AG of G is regarded as being over the represen-

tation field F then AG is just the matrix of TG with respect to the repre-

sentation basis 2 .)

In terms of the natural representation we observe, first of all,

the following weli known result (usually stated for adjacency matrices

over the reals):

Theorem 1

If two graphs G and G' are isomorphic (G Z G') then,

under the natural representation (relative to any choice

of representation field F and basis (2), the representing

transformations TG and T are similar (TG - TG,).
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Note that the condition "TG T G," is stronger than that of being

"cospectral" since the latter requires only that TG and T have the

same characteristic polynomial. In particular, for example, one can

show that all n-point directed trees which are either to or from a point

must be cospectral and yet many such trees can be d.stinguished by the

fact that their representations are nonsimilar.

In what follows we assume that the natural representation is re-

stricted to the semigroup Un of transition graphs on N .

Theorem 2

There exist nonisomorphic transition graphs that are

similarly represented.

Proof: Consider the following two graphs in 714:

1

44

2 4

G: 3 and G':
3
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and suppose that the representation fieId is the reals. Then one can

show that TG and TG, have tile same nontrivial invariant polyaomials

(invariant factors), namely

3 2
x -x and x

and so TG G T,. As G and G' are obviously nonisomorphic, the

theorem holds.

Thus, even for this relatively restricted class of gm pns, a com -

plete set of similarity invariants for the representing linear transfor-

mations (e. g. their invariant polynomials or elementary divisors) fails

to yield a complete set of isomorphism invariants. The investigation

summarized below is concerned with the discovery of just why this is

so, the main result being a graphical characterization of the structural

information conveyed by any complete set of similarity invariants.

Summarizing, first of all, some well known results regarding

the generai structure of transition graphs, every (weak) component of

a transition graph is either a flower (a weakly connected transformatiou

graph) or a tree-to-a-pint. (Trees-to-a-point will subsequently be

referred to as "trees. ") Also, transition graphs are obviously unipathic

and consequently we can use the notation [x, y] to denote a path from x

to y. i[x, y] will denote the length of path [x, y]. A cycle-point of a

transition graph ic any point that lies in a cycle. A tree-point is any

point that is not a cycle-point. Thus every point cf a transition graph

G is a cycle-point iff G is a permutation graph: every point of G is a

tree-point iff G is a forest. The period of a flower G is the number of
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rycle-points of G (i. e. the length of its unique cycle). The root of a

tree G is the unique point of G having outdegree 0.

If G is a transition graph and x is a point of G, let C(x) denote

the (weak) component determined by x. Then the notion of "height,"

as usually defined for trees, can be extended to transition graphs as

follows:

r)efinition 1

If G = (X, y) is a transition graph and x e X then the

heigh h(x) of x is defined as follows:

i) If C(x) is a flower then

h(x) = min {f[x, y] I y is a cycle-point of C(x)}

ii) If C(x) is a tree then

n(x) = f [x, x0] where x0 is the root of C(x).

(Note that h(x) = 0 if and only if x is either a cycle-point

or a root.)

Definition 2

The heigh h(G) of a transition graph G is the maximum

height of any point of G.

For connected transition graphs (i. e. trees and flowers), we

find that the invariant polynomials of the representing transformations

are intimately related to the heights of certain points in the corresponding

C"connected" will subsequently mean "weakly connected" unless other-
wise qualified.
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graphs. This important relationship can be expressed in the form of an

algorithm for computing the invariant polynomials of T directly from

the structure of G. If G = (X.y) is a transition graph let R(G, x) denote

the reachable set of x, i. e.

R(G,x) = {yI[x,y] is a path of G}

and if Y is a proper subset of X let G-Y denote the removal of Y from

G, i.e.

G - Y = G restricted to the set of points X - Y.

Then given any transition graph G we define a sequence of subgraphs

G1, Gn, ... I Gt

as follows:

i) G1 = G

ii) If xi is a point of maximum height in Gi = (Xi, yi) and R(Gi, xi) # Xi

then

Gi+1 = Gi- l(Gi, xi).

Otnerwise the sequence terminates, that is, Gt = G . We say

that such a sequence is derived from G and although a derived sequence

is not necessarily unique (even up to isomorphism) we obtain the follow-

ing important result.

I.f
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Theorem 3

If G is a connected transition graph and G1, G2 , ... , Gt is a se-

quence of subgraphs derived from G then the representing linear

transformation T has t nontrivial invariant polynomials tPi(x),
G

i=I, 2,.., t, which can be graphically determined as follows:

i) If G is a flower of period r then

h(G1 )+r h(Gj)

If G is a tree then

h(G 1 )+l
V/J(X) = x

ii) Ift > 1 then
h(Gi.)+l1

V/i(x) = x , i=2,3,...,t.

The proof of the theorem is based on the classicai decomposition

of a vector space V (relative to a linear transformation T on V) into

cyclic subspaces V, V2, ... , Vt such that the minimum polynomial of

Vi coincides with the i-th nontrivial invariant polynomial of T. The

process of forming a derived sequence of subgraphs parallels this de--

composition process where points of maximum height correspond to

vectors which generate the various cyclic subspaces. The graph ob-

tained on remu;"•ng a maximum reachable set R(Gi, xi) corresponds to

the linear transformation T induced by T on the quotient space

V/VI 9 V2 9 ... * Vi. Therefore, although a somewhat lengthy proof

is required to take care of all the details, the verification is conceptually

rather straightforward.
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To illustrate the theorem, consider the following transition

graph which is a flower of period 2 on 12 points:

4

•- ~12 i
7"

8

. Forming a derived sequence of subgraphs:

G 1 = G

and as h(3) = h(G 1) (we could have also chosen point 7) and

R(Gr3) ={1,2,3,4,5,6} we have:

G2 =9 12P -- •I

10
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As h(7) =hG

G3 = ; 12 1110

Removing R(G3 , 11),

G4
4 0

and as R(G4 , 10) = {10}, the process termiiiates. Accordingly, TG

has four nontrivial invariant polynomials, namely

4/1(x) = 6- x

4/2 (x) = x

IP3 (x) = 2

and 4/4 (x) x.

If we remove the connectedness constraint, the procedure of the

previous theorem cannot, in general, be applied. However, if we re-

quire that the transition graph be a forest1 then such a generalization

is possible, that is:

1In what follows we will use the term "forest" to mean "transition

graph forest.' Thus G is a forest iff every component of G is a
tree-to-a-point.

[t
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Theorem 4

If G is a forest and G1, G2 ,..., Gt is a sequence of

subgraphs derived from G then TG has t nontrivial

invariant polynomials ,i(x) where

h(Gi)+l

' ijx) = x , i= , 2, ... , t.

In order to obtain a graphical characterization of the invariant

polynomials for arbitrary transition graphs, we first define two se-

quences of numerical invariants that relate directly to the structure

of a transition graph G. If x is a tree-point of G the depth d(x) of x

is the length of the longest (directed) path to x, i. e.

d(x) = maxfi y, x] I[y, x] is a path of G}.

Accordingly

Definition 3

If G e ULn then the depth sequence of G is the sequence

6(G) = (dO,di,...,dn-1 )

where

dj = the number of tree-points x of G such

that d(x) = j,

j=O, 1,..., n-1.

Thus if 6 (G) = (d0, di, ... dn- ) the sum

n-I

t = dj

j=0

is simple the total number of tree-points oi G. In particular,
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if G is a forest then t=n; if G is a permutation graph,

t=o.

A second sequence describes the cycle structure of a transition

graph and is defined as follows:

Definition 4

If G e the period sequence of G is the sequencen

7(G) = (r r 2 ,.. .,r)

where

r. = the number of components of G that are3

flowers of period j,

j=l, 2, . .•., n.

Note that when G is a permutation graph, 7T(G) corresponds

to the usual description of cycle structure for permutations.

At the other extreme, if G iq a forest then ii(G) = (0, 0,..., 0).

Example: The transition graph

6
*1 2

7 10

3

59



94

has depth sequence

8 (G) = (5, 1, 1, 1,-, 0, 0, 0, 0, 0)

and period sequence

21(G) = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0).

The study of transition graphs decomposes rather naturally into

the study of two important subclasses, namely forests and permuta-

tion graphs. If we suppose first that G is a forest, it follows that TG

is nilpotent and, accordingly, for some integer 1 < t < n, TG has t

invariant polynomials

e1 e2 et
x ,x , ... ,X

where ei> ei+1 (1 < i < t). (The integers ei are simetimes re-

ferred to as the indices of a nilpotent linear transfcrmation.) By

applying theorem 4, the indices of a representing nilpotent transfor-

mation TG can be related directly to the structure of G as follows:

Theorem 5

If G is a forest and TG has indices e, ... , et

then the depth sequence of G is

5(G) = (do,d,....,dn-1 )

where d = I{i!ei >j! I, j=0, l,...,n-l.

In other words the number of points of G having depth

j is equal to the number of invariant polynom:als of TG

having degree greater than j.

Turning this result around we can show, conversely, that the

depth sequence uniquely determines the invariant polynomials of TG
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that is,

Theorem 6

If G is a forest with depth sequence

6(G) = (do$d,...,Pdn n)

then, for each integer i (1 < i < n), i occurs exactly

mi = d.i-- di

times as an index of TG.

Combining the previous two results we have proved that forests

are similarly represented if and only if they have the same depth

seque-.ce, i. e.

Theorem 7

If G and G' are forests then TG ~TG, if andonly if

6(G) = 5CG')

This, then, completes the graphical characterization of similarity

for forests.

To this point, the transition graphs considered have been such

that similarity invariants of their corresponding linear transformations

do not depend on the nature of the representation field. However, when

we consider transition graphs having nontrivial period sequences (i. e. ,

multi-flower transition graphs) this is no longer the case. To illus-

trate this fact, consider the following two-component permutation

graph:

.1 2
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If the representation field F is a field of characteristic 0 (say, the

reals) then the characteristic polynomial 4 T is given by:
G

•TG(x) = x -2x+ 1.

On the other hand, if F = F2, the 2-element field, then
2

OT GX) = x + 1.

Consequently, if G is compared with the connected permutation graph

G': 1Z2

which, over any field, is represented by a transformation having

the characteristic polynomial

T (x) = x2_,

if F has characteristic 0 then we see that the nonisomorphic graphs

G and G' can be distinguished by their corresponding characteristic

polynomials. On the other hand, if the representation field is F2 ,

we observe that TG and TG' have the same characteristic polynomial

(i. e. G and G' are cospectral over F2). An important questions, there-

fore, is whether the graphical interpretation of a complete set of sim-

ilarity invariatns (the characteristic polynomial is generally incom-

plete) will likewise depend on the choice of representation field. We

begin the investigation of this question by graphically formulating the

elementary divisors of TG relative to the various possible choices of
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a representation field F.

In determining the elementary divisors of TG we note first of

all that we can restrict our attention to prime fields (a field is prime

if it contains no proper subfields). This is possible since TG is de-

fine I in terms of the scalars 0 and 1 and, consequently, if F is a re-

presentation field of characteristic k (k=0 or some prime p) TG is

also over the prime subfield Fk of F. As two linear transformations

are similar over Fk if and only if they are similar over any exten-

sion of Fk (i. e., any field of characteristic k), no loss of generality

will result from such a restriction.

Let Fk denote a prime field of characteristic k and let ,i.(x) de-

note the i-th cyclotomic polynomial (over Fk) where i is any positive

integer not divisible by k (k I i). (If k=0, 4,i(x) is defined for all

i > 1. 4,i(x), by definition, is the polynomial whose roots are all the

primitive i-th roots of unity found in any extension of Fk.) If we

suppose now that G is a permutation graph and consider first the case

where F = F0 = Q (the rational numbers) the elementary divisors of

T can be graphically determined as follows:
G

Theorem 8

If G is a permutation graph with period sequence

7n(G) = (rl, r2 .... rt)

and the natural representation is over Q then, for all

i such that I " i < n, the cyclotomic polynomial Oi(k)

occurs exactly
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mi. = )r.1

times as an elementary divisor of T Moreover, when

taken in their totality, these are all the elementary di-

visors of TG.

To express a similar result for fields of prime characteristic p,

if j is some positive integer, let e(j) denote the exponent of p the prime

decomposition of j (if p t j, e(j) = 0). Thus j can be written:

_= Pp C W

where p r jf. If further we let j denote the familiar Kronecker

delta then

Theorem 9

If G is a permutation graph with period sequence

r(G) = (rl, r 2 , .. , rn)

and Ihe natural representation is over F (p a prime)P

then, for all i such that 1< i < n and p I i, each pri-
1

mary factor of the polynomial
k

occurs exactly

m(k) = r j

times as an elementary divisor of TG (k=0, 1,... ,log.pI,.

fIn the prime decomposition of a polynomial, the piimary facto, o are
the various powers of the prime factors.
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Moreover, -'hen taken in their totality, these are all the f
elementary divisors of TG.

For each of the formulations given by the theorems 8 and 9, if

one now supposes that the inegers mi or m(k) are given and regards

the formulae as a systera of equations in the n unknowns

r 1 , r 2 , .. , r2 n

it can be shown, in each case, that the system has a unique solution.

(The proof for the characteristic 0 case is immediate whereas the

nroof for the characteristic p case is somewhat more involved.) This

proves

Theorem 10

If G is a permutation graph then over an arbitrarily chosen

prime field (and hence over any field) the elementary di-

visors of TG uniquely determine the period sequence of G.

Combining the previous three res'ilts, it follows that two per-

mutation graphs are similarli represented if and only if they have the

same period sequence, i.e.,

Theorem 1.

If G and G' are permutation graphs then TG - TG'

if and only if ir(G) = r7(G').

Having graphically characteriz.d similar representations 'or

forests in theorem 7, and permutation graphs in theorem 11, we now

obtain a general solution by showing that aa arbitrary transition graph

can always be analyzed in terms of a suitably determined forest and/or
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permutation graph. Let G = (X,y) be a transition graph and let XF

denote the set of all tree-points of G and X the set of all cycle-

points of G. Then

Definition 5

The reduction G5 of a transition graph G = (X, y) is

the graph

S=(x

%,nere

= y - {(x,y)I(x,y) e Y, xe XF, ye XI}.

In short, d is the re..ult of removing all the lines of G that are

from a tree-point and to a cycle-point. Alternatively, if we let GF

denote the restriction of G to XF (assuming XF , 0) and let G de-

note the restrictien of G to Xp (assuming Xp P •0) then GF is a forest,

G is a permutation graph and G can be described as follows:

C GF = GifGisaforest

G G = G if G is a permutation graph

GF + G otherwise.

"Thus any transition graph that contains both tree and cycle points re-

duces to the (direct) sum of a forest and a permutation graph. The

justification of this reduction is complete once we establish the follow-

ing important property.

Theorem 12

If G is a transition graph and G is the reduction of G

then, over an arbitrarily chosen representation field,

TG ~Td.
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Given the above property along with the fact that

i) G = GF + Gp (assuming G is neither a forest nor a permutation

graph)

ii) The depth sequences 6 (G) and 6 (C j are essentially the same;

and

iii) The pericd sequences ir(G) and v(Gp) are essentially the same,

we are able to combine the characterizations obtained for forests and

permutation graphs and establish the main result of our investigation.

Theorem 13

If G and G' are transition :i,raphs then TG - TG, if and

only if 6 (G) = 6 (G') and r(G• - •(G').

In other words, two transition graphs with n points are similarly

represented (over an arbitrary field F) if and only if they agree both

in the number points that are tree-points of depth j (0 < j < n-1)

and in the number of components that are flowers of period k (1 < k < n).

Example: Each of the following nonisomorphic transition graphs has

depth sequence (2, 1, 0, 0) and period sequence (1, 0, , 0) and consequently

the representing transformations of all six graphs are similar.

1
2 : 2

T °("1III
3

3
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Applying the previous theorem, it becomes relatively easy to

distinguish subclasses of transition graphs for which a complete 3et

of similarity invariants yields a complete set of isomorphism invari-

ants. To be more precise, let

Jn = {fr, 2, .. f'd

denote the set of isomorphism invariants defined on '2/ as follows:n

fi(G) =Pi(x), the i-th invariant polynomial of TG'

i=l, 2,. .,n.

We refer to n as the set of rational isomorphism i-nvariants and,

as a consequence of the previous theorem, obtain the following cri-

terion for completeness:
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Theorem 14

If •-b C then J is a complete set of iso-

morphism invariants for d if and only if

6 (G) =6 (G') and v(G) =7(G') => G ; G'

for all G, G' in

Applying this criterion, it is immediate that:

Theorem 1.5

The rational isomorphism invariants are complete

for the class

S{GIGU "E ' h(G) = 0}n n

of all zero-height transition graphs.

As n includes class -4 of permutation graphs on Nn we have

Corollary 15. 1

IfG, G' E ,/ thenG~GI if and only if TG~TG Sn G G

(over an arbitrary representation field).

(The corollary i. known for representations over a field of character-

istic 0. On the other hand, the generalization to fields of prime char-

acteristic appears to be new.)

Completeness classes containing graphs with nontrivial tree struc-

tures have also been discovered, the most interesting being a generali-

zation of 'hoi-aogeneous" trees. We say that a transition graph is

homogeneous if points of the same heigiit have the same indegree and

the same outdegree. Every homogeneous transition graph is either a

frest or a transformation graph and by a rather straightfoiward
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argument one can prove:

Theorem 16

The rational isomorphism invariants are complete for

the class k'5 of homogeneous transition graphs.n

Stating this result in terms of the representing linear transformations

we have:

Corollary 16. 1

ItG, G'e ý-i thenG G' if and only if

TG T G,

I



Section 6

Iterative Network Realization of Sequential Machines

This research is a continuation of the study of a class of itera- J

tive networks which was described in the 1967 annual report. It is

primarily concerned with the realization of sequential machines using

a special type of cellular network. This section will summarize the

results obtained during the past year. Proofs and additional details

can be found in S7L technical report no. 06920-22-T.

In the 1967 report, some of the cellular networks that have ap-

peared in the literature were examined and classified according to in-

terconnection structure and cell type. The special class of "iterative

networks" was then informally described in terms of these classifica-

tions. This class of networks was formalized by means of the following

mathematical model.

Definition 1

An (abstract) iterative network is a 6-tuple

N := (G., X, q/, S, Z, 6 ) where:

1. G is a finite group called the interconnection group
of Nwith n = I GI•

2. Xisasubset ofGwithk = 1xI.

3. 71 is a one-to-one function, called the group ordering

for G, mapping I, onto G such that the image of 'k is

4 IGI denotes the cardinality of the set G.

t$ In denotes the set j1. 2,..., n}.

105
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4. S is a finite set of internal symbols with I SI > 2.

5. T, is a finite set of inputs symbols with 12I1 > 1.

6. 6 is a function mapping Sk x Z into S and called

the cell function of N.

The following definition allows an iterative network to be interpreted

as a sequential machine.

Definition 2

Let N = (G, X, 7, S, S, 6) be an iterative network. Then

the machine realized by N is the sequential machine

M(N) = (SG,);,5) where:

1. SG, the set of all functions from G to S, is the

set of all states.

2. Z is the set of input symbols.

3. • is the state transition function mapping SG x

into SG, and defined as follows. For f in SG and

a in ,, the successor state of f under input a is

the function (f, o)6 which takes an element g of

G into the element

(gxl)f .... , (gxk)f,aI 5

of S where b7 = xi for i=-, 2,..., k.

The function 6 is called the behavior of the network N.
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There are several notations in the literature of one machine

imitating another. When the machines in question do not have out-

puts, then the only 1hing which must be imitated is the state transition

function. This is usually done by finding states or sets of states

in the imitating machine which behave in the same way, with respect

to their respective transition functions, as the states of the machine

being imitated. We will use the following notion of one machine

imitating another.

Definition 3

Let M and M' be sequential machines. Then M

is said to realize M' if there is a submachine

of M isomorphic to M'.

This definition is frequently weakened even more by only requiring

that M' be a homomorphic image of a submachine of M. However,

for our use, the stronger version is sufficient.

It is by means of this concept of imitation that the abstract

theory of machines is usually linked to the physical circuits used

to realize them. In our case, the circuit has been modeled as an

iterative network which realizes sequential machines as follows.

Definition 4

Let M be a sequential machine. N an iterative network,

and M(N) the machine realized by N. Then the network

N realizes the machine M if and only if M(N) realizes M.
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Note that any iterative network N will always realize M(N), the ma-

chine realized by N. In general, it will also realize many other

machines as well. Hence the machine realized by the iterative net-

work N is the sequential machine M(N) (definition 3) while P. ma-

chine realized by N is any machine isomorphic to a submachine of

M(N).

In order to find an iterative network which realizes a given

sequential machine, it is first necessary to find a group which can

be used as the network's interconnection group. The following re-

sult suggests that we should use some subgroup of the machine's

automorphism group.

Theorem 1

The interconnection group G of the iterative network

N is isomorphic to a subgroup of the automorphism

group Uf M(N).

The next result states that, in fact, any subgroup may be used.

Theorem 2

Let M = (Q. E, A) be a sequential machine and G

be any group of autornorphisms of M. Then

there is an iterative network N which uses G

as its interconnection group and which realizes M.
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There are two cases in which Theorem 2 results in "trivial"

realizations. The first is when the automorphism group of the

machine to be realized is trivial. This results in a network with

only one cell which is as complex as the machine. The second case

arises when the cardinality of the set of internal symbols is equal

to the number of states in Q. In this case, all of the cells are as

complex as the original machine and nothing is gained by using more

than one cell.

It has been shown that the second case can always be avoided

it the number of states in Q is greater than 2. However, both

cases can be avoided simultaneously by extending Theorem 2 to ob-

tain a "binary network".

An iterative network is called binary if the cardinality of its

set of internal symbols is two. That is, if N = (G, X, 17, S, Z, 6 ) is

an iterative network, then N is a binary network if and only if

IS I = 2. In this case, every cell has a single output terminal which can take

on only two distinct values. We ask the following question. Given

an arbitrary sequential machine, can we find a binary iterative net-

work which realizes it ? The answer is given by the following theorem.

Theorem 3

Given any sequential machine M = (QX. ,). there

exists at least one binary iterative network which

realizes it.
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The proof of this result involves first embedding the machine

to be realized in a larger machine which has a nontrivial automor-

phism group. Then the techniques used in the proof of Theorem 2

are used to realize this machine. Since the relation of ma-

chine realization is transitive, this resulting network will realize

the original machine.

Although the proof of Theorem 3 is constructive, it can not

be considered a practical. design technique due to the large num-

ber of cells in the realizing network. This procedure can, however,

be applied successfully to certain special classes of machines to get

more practical binary realizations. In particular, the class of

autonomous machines and the class of total automata (i. e. strongly

connected sequential machines whose automorphism group is as

large as possible) can be realized with binary networks where the

number of cells is the same order of magnitude as the number of

states in the machine. In addition, total automata can be realized

with binary networks where the number of internal cell input ter-

minals is equal to tie number of external input symbols.



Section 7

Optimal Sequencing of Jobs Subject to Deadlines

7. 1 Introduction

Held and Karp [191 have deveioped a general dynamic program-

ming algorithm for problems involving the sequencing of jobs subject

to deadlines. There are a number of these problems, however, for

which a ,ertain "consistency principle" holds. This principle can

be stated as follows:

Given a set of jobs which are to be processed subject

to deadlines, there exists a linear ordering of the

complete set of jobs, such that for any subset of

these jobs, an optimal sequence exists in which the

ordering of the jobs completed on time is consistent

with the linear ordering.

This paper demonstrates how this consistency principle can

be exploited to obtain solution methods which are cone iderably

more efficient thap that of Held and Karp. Problems considered

are (1) a single machine and jobs with individual deadlines

ill
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(Moore 132]), (2) the same problem with partial ordering restric-

tions on the sequence, (3) two machines in series and jobs with

a common deadline (Johnson [20]), and (4) a single machine, jobs

with a common deadline, and individual linear deferral costs

(McNaughton [30] and Smith [411). These problems are dealt with

in SecLions 2, 3, 4, and 5, respectively. Two concluding sections

discuss aditiortal problems with partial ordering restrictions and

multi- machine generalizations.

7. 2 Single Machine, Multiple Deadlines

Let there be given jobs Jl' J2 ' Jn' For each job Ji, let

ti denote its processing time on a single machine, Di, its deadline,

and r a re' ,ard which is earnee ii processing of the job is com-

pleted by the deadii.e. Without loss of generality, assume that

Di•< Di+1 ; for .=1,2,..., n-1.

We wish to fi'id a sequence for the jobs which maxi-

mizes the sv- of the earned rewards. According to Moore [3> I,

there exists an optimal r•quence in wlich (1) the jobs compkted

on time (meeting deadliaes) precedc the tardy jobs and (2) the on-

time jobs are order 2 according to their ieadlines, earliest dead-

line first.

It follows that the problem consists of making a selection of

the jobs which are to be comnpleted or time. Givel. ,uch a selection,

the ordering AP thOese jobs is determined solely by .' eir deadlines;
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the ordering of the remaining (tardy) jobs which follow is arbi-

trary. The selection problem can be formulated as an integer

linear program as follows:
n

Maximize I r.x.
i=1•

subject to Tx < D

where

x. =1 if job J. is selected1 1

= 0 otherwise,

and T and D are of form

0t1  0 0 0 0 0 D

t 0... 0 0 0D
1 22

t1  t2  t 0 0 0D

T =D

t t2 t3  t 2  0 0 D

t t t ... t t 0 D
1 2 3 tn-2 tn-I n-i

t1  t2 t3  t t t D
n-2 n-i n n

As one might expect from the special structure of this prob-

ien, it can be solved by dynamic programming techniques similar

to those used for the well known "knapsack" problem.
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Definition: Let fi(t) = the maximum attainable

total reward foz' a selection of jobs from the

set of jobs fJ 1  Jil, subject to the con-

straint that the completion time of no job is

later than t.

A recursion relation for fi(t) can be formulated as follows:

1) Consider t < D.. If there exists an optimal schedule

in which Ji is completed on time, then Ji can be the

last on time job and fi(t) = f il(t-ti) + ri. If no such

schedule exists, then fi(t) = fi l(t).

2) For t>_Di>... > D1 , fi(t) = fi(Di) and can be corn-

puted in the manner indicated above.

Hence, for i=1, 2,..., n:

fi(t) = fi(Di) for t > Di

fi(t) = max {fi 4l(t), ri + fij (t-ti)} for 0 <. t <_ Di

subject to the boundary conditions

fi(0) = 0

f0 (t) : 0

ii(t) = - for t ,. 0

The maximum attainable :otal reward for the complete set of

jobs is given by f n(D ).

Assuming that all of the processing times "and deadlines are

integers, the length of the computation grows no more rapidly than
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niDn, i.e. proportional to the product of the number of jobs and

the longest deadline.

Note also that the problem is symmetric with respect to time.

This means that with slight modification of the recursion equations,

one can just as well solve a problem in which the times D. denote1

earliest possible starting times for the jobs, and one determines a

sequence which maximizes the sum of the earned rewards, subject

to a common deadline, t, for all jobs.

7. 3 Single Machine Problems with Partial Ordering Restrictions

In the single machine problem just discussed, it was assumed

that any sequence for the jobs was feasible. An additional compli-

cation arises, however, when it is required that the sequence for

the jobs must be consistent with a given partial ordering Q, which

may be due to technological restrictions of various kinds.

First we shall develop necessary and sufficient conditions

for tie existence of a sequence in which all jobs are completed

on time, consistent with the given partial ordering restrictions.

These conditions generalize the result of Smith 1411

that an unrestricted set of jobs can all be completed on time if and

only if they are comnpleted on time when they are sequenced ac-

cording to deadlines.

A0gain let there be given jobs Jl . % where job J

has processing time t and deadline D., with an arbitrary partial order-
i Q1

ing Q. The object is to frnd d linear or'dering L
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such that all jobs can be processed on time consistent with Q

1ff they are on time in the sequence defined by L.

Assume, without loss of generality, that D1 <_ D2 < ... < Dn

and for each job, J,, define a vector, V, as follows:

V = IvI , 2, Vin)

iwhere Vk = 1 i(i k
k ffJk)

= 0 otherwise.

Let L denote the relation on the jobs obtained by oziering

these vectors lexicographically from the largest to the smallest.

Lemma 1: L is a linear ordering.

Proof: Since L is dete,'miaed by a lexicographic ordering, it is

known to be both reflexive and transitive. Hence, it is only neces-

sary to show that L is antisymmetric. Consider a pair of jobS,

Ji and Jk, i/k where Vi > Vk. We must show that Vi > Vk.

i k k i
Sudpose V = V , then V 1 = V k = 1, since Q is a partial ordering.

Hence (Ji' Jk) and (Jk' Ji) E Q, a contradiction siace Q i7 a

partial ordering and ilk.

HenceVi Vk andiV.>

Lemma 2: L is consistent with Q.

Proof": If (Ji, Jk E Q. then Vk = 1 implies that Vi 1.

Further, V k. = 0 while V i.•= 1. Hence Vi •- Vk and (Ji. Jk) L.

Ik
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Theorem: All jobs in the set J can be completed on time con-

sistent with the partial ordering Q iff they are on time in the

sequence defined by L.

Proof: If - Obvious

Only if:

Consider an arbitrary sequence S - (J. ... Ji ) in which all jobs
1 n

are completed on time consistent with the partial ordering Q,

where S is distinct from L. Then there exists a pair of adjacent

jobs, J. J. in the schedule S where1k 1k+1

1k+1 '
V > V.

Thus, there must be a first position, say q, in which the vector

V k+l contains a 1, but the vector V-k contains a 0. Clearly, q i k

and there are two cases to consider:

1) q = ik+1

Then D. < Dik and a new schedule, S1 may be1k+1 -

defined from S by interchanging J. and J. in which1k+!

J. and J. are still on time.I k Ik+1
2) q ik+1 '

Then jobJq has Dq < D. ik+l, Dik and (Jik+1 J q) EQ

Hence J follows both J. and J. in the schedule S and a
n ewch e Jq k+l

new schedule. SI may be defined from S by intev,.:hanging J. and

J.i in which J. and J i are still on time.
1k+1 'k k+1
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If S1 is L, we are done. Otherwise the above process is

repeated to obtain schedules S. .. Sp where Sp is L.

Q.E.D.

This result can be used to obtain a dynamic programming

solution to the following problem. All jobs are to be completed

on time, subject to the partial ordering restriction Q, where for

each job Ji there is a choice of one of m procesAing times tlI,

t2i, tm with associated rewards r1 2 m (It is

reasonable to assume that the rewards would be proportional to

the processing times.)

Since all jobs are to be completed on time consistent with Q,

the only sequence that need be considered is that defined by L.

Consequently, let us now assume that the jobs are reindexed accord-

ing to L, and let fi(t) denote the maximum attainable total reward

associated with the first i jobs in the sequence L, subject to the

condition that no job is completed 1ater than time t.

A recursion equation for fi(t) is as follows. For izl, 2.... n:

fi(t) = fi(D.) for t D.

= max {r i +fi-l(t-t i)I for 0 t D..
j:l, 2 . i

subject to the boundary conditions

fi(O) 0

f0(t) 0

ft(t) - 3C for t 0
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The case in which it is not required that all jobs are com-

pleted on time is discussed in Section 6.

7. 4 Two Machines in Series, Common Dr.adline

We now deal with the problem of Lwo machines in series

alld a common deadline where each job must be processed by both

machines, in sequence. Consider a set of jobs, J = {Jl' n

where for each job Ji, a. denotes its processing time on the first

of two machines, and bi its processing time on the second. Let

r. denote a reward which is earned if job J. is completed by the
1 1

second machine by a deadline T (common to all jobs). The prob-

lem is to find a sequence for the set of jobs which maximizes the

sum of the earned rewards.

It follows from the results of the previous chapter and those

of Johnson [201 that there exists an optimal sequence in which (1)

the jobs completed on time precede the tardy jobs: (2) the jobs

are processed in the same order by both machines: and (3) the

on-time jobs are oidered according to the following relatior

JOb J precedes Jq only if min ýa p. b m- ra , b

Once again, the problem consists of making a selection of

Hi, Jobs which are to be conipi ,(cd on timne. Given such a selection.

V
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the ordering of these jobs is determined by Johnson's relation;

the ordering of the remaining jobs which follow is arbitrary.

Without loss of generality, assume that

min{ fa, b I < min{aj+1,bj}, forj=1,...,n-1.

Let fM(tl, t2 ) = the maximum attainable reward for a selec-

tion of jobs from among J, . .. , Ji' subject to the constraint that

the completion time of no job is later than time t1 on the first ma-

chine or t 2 on the second. Following the type of argument used in

Section 2, a recursion relation for f i(t 2) can be formulated as

follows.

For i=0, 1, 2, .. ,n:

fi(ti, t 2 ) = max {f.il(tl, t2 ), ri + fil(min{tl-a,, t 2 -ai-bi}, t2 -bi)}

subject to the boundary conditions:

f0(tl, t2 ) = 0

f (0,0) = 0

fi(tl,t2) = -0 (t - 0 or t2 ,0)

The maximum attainable total reward for the complete set of

jobs is, of course, given by f (T. T). Assuming all processingn

times are integers, the length of the computation grows no more

rapidly than nT2.
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7. 5 Single Machine, Common Deadline, Linear Deferral Costs

As a further example of the consistency principle, consider

the problem of a single machine, a common deadline, and linear

deferral costs.

Consider a set of jobs J = {Jl' "' J'ni' where for each job

Ji, ai denotes its processing time and r. a reward which is earned

only if the job is completed by a deadline T (common to all jobs).

In addition, let pi denote a linear deferral cost coefficient. If the

job Ji is completed at a time t < T, the net reward earned for that

job (reward minus deferral cost) is r i-pit.

Consider the position of a contractor who is free to accept

or reject jobs. For each job Ji which is accepted and completed

prior to the deadline, a reward r. is earned. However, the deferral1

of the job causes a cost to be incurred which is determined by the

coefficient pi. What selection of jobs maximizes profit?

Given any selection of jobs, such that the sum of their

processing times is no greater than T. the jobs should be ordered

according to the ratios pi/ai, the job with the largest ratio being

processed first. This result has been found by McNaughton j301

and Smith [411.
Pi. Pi+

Without loss of generality. assume - a. Leta a a +l

fi(t) z the maximum attainable total net profit for a selection of

jobs from among J1, J 2 Y .... Ji, subject to the constraint that the

starting time of the first job is t and the last job is completed no
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later than T,

An appropriate set of l'ecursion equations is as follows for

t>0.

fi(t) - max f-(t)r - p(ta) f.(t+a)}

subject to the boundary conditions

fi(T) = 0

f0 (t) = 0

fi(t) = - c for t > T.

The maximum attainable total net profit for the complete set of jobs

is given by f n(0). Assuming all processing times are integers, the

length of the computation grows as nr.

There is an interesting variation of this problem in which the

deadline is not controlling. E.g., T is as large as the sum of all

the processing times. In this case, the selection of jobs is con-

trolled solely by the question of whether or not jobs can be com-

pleted before their deferral costs exceed their rewards.

7 6 Additional Partial Ordering Considerations

It would be desirable to be able to extend the result6 of Sec-

tions 2, 4, and 5 to the situation in which optimal sequences are

to be derived subject to the restriction that either (a) all jobs are

ordered consistently with an arbitrary partial ordering Q or (b) all

on time jobs are so ordered. (Section 3 presented such results

for the case in which all jobs were required to be on time.)
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Unfortunately, the results obtained above do not generalize except

for very special partial orderings for which the consistency prin-

ciple can be shown to hold.

One such case arises when the partial ordering induces a par-

titioning of the jobs into a sequence of equivalence classes,

(E,. .. , Ep where

1) For each equivalence class, Ei, r, J s E El'

implies that Jr and J are not related by Q.

2) J c Ei, J e E implies that (Jr' )E Q"
r 1 i+l rJs)6Q

In this case, the dynamic program .aing aigorithms previously

defined may be- applied to each equivalence class individually and

the optimal sequence can be obtained by concatenating the reiu.'Lng

sequences for E,. E E (The individual solutions, of course,

take into account that the starting time for the first job in the i-th

equivalence Ala•i equals the sum of the processing times for the jobs

in the previous i-I equivalence classes.)

There are also other situations in which Q may not be o. this

special form, but the parameters of the problem are such that the

consistency principle can be shown to hold.

7.7 Machines in Parallel

Each of the problem formulations and solution methocs given

above can be extended in a Ncry natural way to the situation in

which there are many machines, or sets ot ni:ichinis. ' Id.
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and any given job can be processed by any given machine. In ench

such extension, the jobs that are assigned to any given machine

are processed in an order which is consistent with the ordering

obtained by solving the associated single machine problem.

Consider the extension of the problem of multiple deadlines

(Section 2 above). Let there be given a set of jobs, J = J1 d Jn}'

For each job J., let ai k denote its processing time on the k-th

of M machines and ri k a reward which is earned if processing of

the job is performed on machine k and completed prior to the dead-

line for the job, Di.

As before, we assume without loss of generality, that Di<

Di for t=l, 2, ... , n-i. (Note that it is feasible to have different

deadlines on different machines. However, it must be the case

that Di < Di+l, k for all k.) Let fi(t . t ) = the maximum

attainable reward for a selection of jobs from among J1, J2, " Ji,

subject to the constraint that the completion time of no job is later

than tk for machine k. Now, we have, for i-O, 1, ... , n:

fi(t 1.. tin) = fki-(t t 2, t kIDV tk+, m ... ,tin), iftk > Di

= max {fi-l(tl, t2 , ... , tin),

max {ri, k + fi-l(tl, t 2, .,tk-ai k, ... Ptm)}J
k

otherwise

subject to the boundary conditions
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f 0 (t, t2 ,...,tM) = 0

f i(0,0 o ... , o) = 0

fi(tiIt 2 ,...,tm) = -oo if anytk < 0

The length of the computation implied by these recursion

mequations grows as mnDn. Some saving, of course, can be

realized through exploitation of symmetry in the case in which

all machines are identical, i. e. a. = a. and r. = r. for
J, p J, q J, p J, q

all j, p, q.

The formulation of recursicn equations for the extensions

of the problem described in Sections 4 and 5 is quite similar,

and results in computations which grow as mnT2m and mnTm

respectively. One should compare the extensicn of the deferral

cost case with the solution method given by Rothkopf [401 for the

multi-machine deferral cost problein without deadlines. In that

case, a computational growth of mnTml is possible.

We note that in the generalizations of the problems of Sec-

tions 4 aiid 5, it is possible to have some variation in the

characteristics of the individual machines, provided the existence

of a single linear ordering is not interfered with. In the case of

sets of two machines in series, it must be possible to find a linear

ordering such that, for all k,

min(aj, k' J+ f k) l min(aj+l, k' bcj, k)

and in the case of linear deferral costs,
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Pj, k < Pj+1, k
a.jk - aj+lk

The rewards, rj, k' need be related in no particular way.



Section 8

THE THEORY OF FORMAL LANGUAGES AND ITS M4PACT ON THE

DESIGN AND IMPLEMENTATION OF PROGRAMMING LANGUAGES

Leonara Y. Liu

8. 1 Introduction

Recently, research in the area of formal languages has been

intensified because of interesting interpreations with respect to pro-

gramming languages. A formal language is any set of finite length

strings of symbols over a finite alphabet. The theory of formal

languages is concerned with the description of languages, their prop-

erties, structures, relationships and their recognition. Some of the

results of this theory are of direct interest to the designer of compu-

ters, programming languages and compilers. Some of these results

are briefly reviewed in this section.

8. 2 Finite Descriptions of Languages

Formal languages were first considered by mathematical lin-

guists as mathematical models for natural languages[ 51. if a natural

language had Gnly a finite number of sentences, it could be completely

specified by a finite list. However., this is not the case. Almost

every meaningful language has an infinite number of sentences.

Chomsky defined four types of grammars [3, 41.

A type 0 grammar is a 4-tuple G = (N, Z, P, S). N and 2 are

two disjoint nonempty sets of nonterminal symbols and terminal

127
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symbols respectively. S is a special nonterminal symbol (sentence

symbol). P is a finite nonempty set of production rules of the form

a - . a is any string of nonterminal symbols and terminal symbols

with at least one nonterminal symbol in it. 1 is any string of termi-

iial and nonterminal symbols. Let wIw2, a, ,1,7'2 be strings of

terminal symbols and nonterminal symbols. If 51 = 71a72,

W =a and a- 0 is in P, then wl=--> is used to denote
*

this fact (w, -'-;> w2 is used whenever G is understood). w0 o=r wn

if therp exist w0 , 1 , " wn such tha t wi =•-> i+1 for 1 < i < n
(w0 wn is used whenever G is understood). The language gen-

erated by G is denoted by L(G).

L(G) x {xIs = x and x is a string of terminal symbols}.

A type 1 grammar (context sensitive grammar ), G, is a re-

stricted type 0 grammar in that the length of 1 is longer than or e-

qual to the length of a for every production rule a - 9 in G. A Ikn-

guage is a context-sensitive !Rng••g• if it can be generated by a con-

text sensitive grammar.

A type 2 grammar (context free grammar), j, is a restricted

type 1 grammar in that every production rule in G is of the form

A - 1, where A is a single nonterminal simbol and 3 is a string of

terminal and nonterminal symbols. A. language is called a context-

free language if it can be generat.=d by a context free grammar.

A type 3 grammar, G, "s a restricted type 2 grammar in that

every production rule is of the form A - aB or A -- a where A, B are
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nontermiral syirbols and a is a terminal symbol.

It is well known that the context free gainmars form the back-

bone of the syntax of programming languages. The most represen-

tative example of this is the use of cantext free grammar in specify-

ing most of the syntactic rules of ALGOL 60 [34]. Clearly, this per-

mits a more precise and efficient specification of the programming

languages. However, attention should be paid to the fact that context

free grammars are not quite powerful enough to completely specify

most programming languages. Parts which are not appropriate for

context free specifications are specified by English in ALGOL 60 [34].

On the other hand, the context sensitive grammars can completely

specify the programming languages. An interesting problem is to

define some class of languages, lying between the class of context

sensitive languages and the class of context free languages, that is

powerful enough to model the programming languages and may be

parased efficiently. Little is known about classes of languages which

lie between the class of context sensit.ve languages and the class of

context free languages. Indexed grammars [1], programmed gram-

mars [391, and finite-reversal pushdown automata [271 specify classes

of such languages.

8. 3 Ambiguity

When a programming language is being designed, it is always

essential to know whether the "interpretation" of every sentence in

the language is unique or not. This idea has been formalized in the
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theory of formal languages. A grammar is ambiguous if there exist
1

two "distinct" derivations of a sentence . A language is inherently

ambiguous if every grammar generating the language is ambiguous.

It has been shown that, 1) there does not exist an algorithm to decide

whether a context free grammar is ambiguous; and 2) there does not

exist an algorithm to decide whether a context free language is inher-

ently ambiguous [2, 12, 13]. These negative results are important

since they prevent research workers from looking for such algorithms.

Furthermore, they point to the need of a restricted class of context

free languages with the property that the ambiguity problems concern-

ing this class is decidable and this class of languages is powerful

enough to specify the "context-free syntax" of the programming lan-

guages. The class of deterministic context free languages [14, 1.7]

seems to fit these requirements. However, further research is

needed.

8. 4 Efficient Parsing Algorithms

An important property of a laaguage is the amount of time neces-

sary to recognize a sentence of the language. A language can be parsed

in linear time if there exists an algorithm such that, for an arbitrary

input sentence of length n and a specification of the language, the time

ILet G = (N, E, P. S) be a grammar. Then. for every sentence x in
L(G), there exist Z. derivation S - a a x.
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(i. e. number of steps) required by this algorithm to parse this sen-

tence is proportional to n. The general context free grammars, re-

quire more than linear time to parse a context free langaage in gen-

eral. It has been shown by Younger [461 that there exists an algo-
3

rithm to recognize context free languages in time n3 .

When recognizers are really built, context free grammars are

rarely used. Restrictions are always put on the grammar to assure

that it can be parsed in linear time. The operator precedence gram-

mar defined by Floyd [10] is the most well known one. It is often used

to recognize portions of a programmir.g language. Unfortunately, the

operator precedence grammars are not rich enough to specify all the

"context-free syntax" of the programming languages. Precedence

grammars [441, extended precedence grammars [281, simple deter-

ministic context free grammars [221, LR(k) grammars [21] have also

been defined. All of them specify classes of languages richer than

the class of context free languages. Theoretically they can also be

parsed in linear time. However, they are still much lecs efficient

than the operator precedence grammar in a strictly practica! sense.

8. 5 Conclusion

The body of knowledge in the area of formal languages has been

growing very rapidly in recent years. The concept of a grammar has

been used for specifying programming languages and building efficient

compilers.



The basic drawback in the definition of a formal language is

the lack of meaning associated with each sentence. Thus it is nct

surprising that the application of formal languages appears to be

limited to the syntax specification and the parsing algorithms and

that various practical problems concerning compilers cannot be

answered satisfactorily by the theories in the area of formal lan-

guages.

The next step requires the assignment of meaning to each

sentence in a formal language. Some investigations indicate that

the complexity of the research problem increases considerably

but there are • encouraging results. For example, it is known

that . -e di es a,& exist an algorithm to) decide whether two arbi-

trary con'-ext free grammars generate the same language [241. How-

ever, it has been shown [351 that there exists an algorithm to decide

whether two context free grammars are structurally equivalent in

the sense that they not only generate the same language but also

"siructure" these sentences in the same manner (the same meaning).

If: is possible that, after assignin"g "meaning ' to each sentence in a

language, algorithms to solve some problems which have been proven

to be uns3lvable at least this seems to be a promising direction for

future research.
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